Kaon Spectroscopy at COMPASS

Boris Grube

Thomas Jefferson National Accelerator Facility

KLF Collaboration Meeting September 19, 2023 Jefferson Lab, Newport News, VA

Why Kaon Spectroscopy?

PDG 2022: 25 Kaon States

- Only 16 kaon states well established
- 9 states need confirmation
- Many PDG entries more than 30 years old
- Many predicted quark-model states still missing
- Some hints for supernumerary states

 \Rightarrow non- $q\bar{q}$ states?

Why Kaon Spectroscopy?

PDG 2022: 25 Kaon States

- Only 16 kaon states well established
- 9 states need confirmation
- Many PDG entries more than 30 years old
- Many predicted quark-model states still missing
- Some hints for supernumerary states

 \implies non- $q\bar{q}$ states?

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerary states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ nonet with $a_0(980)$, $K_0^*(700)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - Only since PDG 2021 $K_0^*(700)$ is "well established"

Kaon spectrum required as input in other fields

- E.g. search for CP violation in multi-body decays of heavy mesons
 - *Example:* $B^{\pm} \rightarrow D^0 K^{\pm}$ with $D^0 \rightarrow K^0_S \pi^+ \pi^-$
 - Amplitude analysis of D^0 Dalitz plot requires accurate knowledge of resonances in $K_S^0 \pi^{\pm}$ and $\pi^+ \pi^-$ subsystems

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerary states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ nonet with $a_0(980)$, $K_0^*(700)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - Only since PDG 2021 $K_0^*(700)$ is "well established"

Kaon spectrum required as input in other fields

- E.g. search for CP violation in multi-body decays of heavy mesons
 - Example: $B^{\pm} \rightarrow D^0 K^{\pm}$ with $D^0 \rightarrow K^0_S \pi^+ \pi^-$
 - Amplitude analysis of D^0 Dalitz plot requires accurate knowledge of resonances in $K_S^0 \pi^{\pm}$ and $\pi^+ \pi^-$ subsystems

Kaon Spectroscopy at COMPASS

Main Production Process: Diffractive Dissociation

- 190 GeV/c kaon beam on stationary proton or nuclear target
- Triggering on target recoil ensures elastic scattering at target vertex
- Highly excited states prefer to decay into multi-body hadronic final states
- Various final states measurable
- *n*-body final state strongly boosted \implies forward spectrometer

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph, NIMA 779 (2015) 69

Multi-purpose fixed-target experiment

- Beam-particle ID (CEDARs)
- Two-stage spectrometer
- High-precision measurement of chargedparticle trajectories
- Detectors for energy measurement and particle identification
- 1 PB of data per year

Jefferson Lab

- All kaon states (except $J^P = 0^+$) can appear as intermediate states X^-
- Study several decay modes over wide mass range in single analysis, e.g.
 - $X^- \to \rho(770) K^-, f_2(1270) K^-, \dots$
 - $X^- \to K^*(892) \pi^-, K_2^*(1430) \pi^-, \dots$
- Strange partner process to $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$
 - Studied in great detail at COMPASS

PRL 115 (2015) 082001; PRD 95 (2017) 032004; PRD 98 (2018) 092003; PRD 105 (2022) 012005

lational Accelerator Facility

- Beam contains $2.4 \% K^-$
- World's largest sample: 720k exclusive events
- $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Potential resonance signals
 - Disentangled using partial-wave analysis (PWA)
- $\approx 3.5 \times$ more data than CERN WA03

- Beam contains $2.4 \% K^-$
- World's largest sample: 720k exclusive events
- $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Potential resonance signals
 - Disentangled using partial-wave analysis (PWA)
- $\approx 3.5 \times$ more data than CERN WA03

- Beam contains $2.4 \% K^-$
- World's largest sample: 720k exclusive events
- $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Potential resonance signals
 - Disentangled using partial-wave analysis (PWA)
- $\approx 3.5 \times$ more data than CERN WA03

- Beam contains $2.4 \% K^-$
- World's largest sample: 720k exclusive events
- $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Potential resonance signals
 - Disentangled using partial-wave analysis (PWA) techniques
- $\approx 3.5 \times$ more data than CERN WA03

190 GeV/ $c K^-$ beam on p target

- Beam contains 2.4 % K⁻
- World's largest sample: 720k exclusive events
- $0.1 < t' < 1.0 \, ({\rm GeV}/c)^2$
- Potential resonance signals
 - Disentangled using partial-wave analysis (PWA) techniques
- $\bullet~\approx 3.5\times$ more data than CERN WA03

200k events, $0 < t' < 0.7 \, (\text{GeV}/c)^2$

rson National Accelerator Facility

Jefferson Lab

Isobar Model

- X⁻ decays via π⁻π⁺ and K⁻π⁺ "isobar" resonances ξ⁰
- *J^P* of a resonance determines angular distribution of its daughter particles
- Analogy: multipole radiation in classical electrodynamics
- Determine J^P of intermediate resonances X⁻ and ξ⁰ from measured angular distribution of final-state particles

Isobar Model

Jefferson Lab Thomas Jefferson National Accelerator Facility

- X^- decays via $\pi^-\pi^+$ and $K^-\pi^+$ "isobar" resonances ξ^0
- *J^P* of a resonance determines angular distribution of its daughter particles
- Analogy: multipole radiation in classical electrodynamics
- Determine J^P of intermediate resonances X⁻ and ξ⁰ from measured angular distribution of final-state particles

Isobar Model

- $\pi^{+} \pi^{+} \pi^{+}$ Dipole $\pi^{-} K^{-}$ (L = 1)
- X^- decays via $\pi^-\pi^+$ and $K^-\pi^+$ "isobar" resonances ξ^0
- *J^P* of a resonance determines angular distribution of its daughter particles
- Analogy: multipole radiation in classical electrodynamics
- Determine J^P of intermediate resonances X⁻ and ξ⁰ from measured angular distribution of final-state particles

lefferson Lab

National Accelerator Facility

First Analysis Stage: Partial-Wave Decomposition in $(m_{K\pi\pi}, t')$ Cells

Partial wave defined by

- $J^P M^{\varepsilon}$ quantum numbers of X^-
- Orbital angular momentum *L* between ξ^0 and bachelor π^-/K^-
- Isobar resonance ξ^0
- *Example:* $1^+ 0^+ \rho(770) KS$

First Analysis Stage: Partial-Wave Decomposition in $(m_{K\pi\pi}, t')$ Cells

Partial wave defined by

- $J^P M^{\varepsilon}$ quantum numbers of X^-
- Orbital angular momentum *L* between ξ^0 and bachelor π^-/K^-
- Isobar resonance ξ^0
- Example: $1^+ 0^+ \rho(770) KS$

- Fit PWA model to data in $(m_{K\pi\pi}, t')$ cells \implies partial-wave amplitudes in each cell
- Wave set inferred from data using regularization-based model-selection techniques
- Uncertainties estimated by boostrapping
- Verified method by performing detailed Monte Carlo input-output studies

- Resonance components modeled using Breit-Wigner amplitudes
- Coherent non-resonant component
- Incoherent backgrounds from other processes
 - Incoherent background from π[−] p → π[−]π[−]π⁺ p explicitly modeled using results from π[−]π[−]π⁺ PWA
 - Incoherent effective background component models other background processes

- Model *m*_{Kππ} dependence of partial-wave amplitudes
- Resonance components modeled using Breit-Wigner amplitudes
- Coherent non-resonant component
- Incoherent backgrounds from other processes
 - Incoherent background from π[−] p → π[−]π[−]π⁺ p explicitly modeled using results from π[−]π[−]π⁺ PWA.
 - Incoherent effective background component models other background processes

Second Analysis Stage: Resonance-Model Fit

- Resonance components modeled using Breit-Wigner amplitudes
- Coherent non-resonant component
- Incoherent backgrounds from other processes
 - Incoherent background from π[−] p → π[−]π[−]π⁺ p explicitly modeled using results from π[−]π[−]π⁺ PWA
 - Incoherent effective background component models other background processes

Jefferson Lab

- Resonance components modeled using Breit-Wigner amplitudes
- Coherent non-resonant component
- Incoherent backgrounds from other processes
 - Incoherent background from π[−] p → π[−]π[−]π⁺ p explicitly modeled using results from π[−]π[−]π⁺ PWA
 - Incoherent effective background component models other background processes

- Resonance components modeled using Breit-Wigner amplitudes
- Coherent non-resonant component
- Incoherent backgrounds from other processes
 - Incoherent background from $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ explicitly modeled using results from $\pi^- \pi^- \pi^+$ PWA
 - Incoherent effective background component models other background processes

- Resonance components modeled using Breit-Wigner amplitudes
- Coherent non-resonant component
- Incoherent backgrounds from other processes
 - Incoherent background from $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ explicitly modeled using results from $\pi^- \pi^- \pi^+$ PWA
 - Incoherent effective background component models other background processes

Second Analysis Stage: Resonance-Model Fit

Most comprehensive analysis so far

- Fit amplitudes of 14 waves simultaneously
- Use information from partial-wave intensities and interference terms (relative phases)
- Amplitudes modeled using 13 kaon resonances
- Fit data from 4 t' bins simultaneously
 - Enforcing identical resonance parameters in each *t*' bin
- 408 fit parameters (11 masses and widths) constrained by 12 768 data points

Second Analysis Stage: Resonance-Model Fit

Most comprehensive analysis so far

- Fit amplitudes of 14 waves simultaneously
- Use information from partial-wave intensities and interference terms (relative phases)
- Amplitudes modeled using 13 kaon resonances
- Fit data from 4 t' bins simultaneously
 - Enforcing identical resonance parameters in each *t*' bin
- 408 fit parameters (11 masses and widths) constrained by 12768 data points

Partial Waves with $J^P = 2^+$

PDG 2022

• $K_2^*(1430)$ is well-known resonance

Partial Waves with
$$J^P = 2^+$$

Jefferson Lab

- $\rho(770) K D$ -wave
- *K**(892) *π D*-wave
- $K_2^*(1430)$ Breit-Wigner parameters
 - $m_0 = 1430.9 \pm 1.4$ (stat.) $^{+3.1}_{-1.5}$ (sys.) MeV/ c^2
 - $\Gamma_0 = 111 \pm 3 \text{ (stat.)}_{-16}^{+4} \text{ (sys.)} \text{ MeV}/c^2$
 - In agreement with previous measurements

 $\pi^{-}\pi^{-}\pi^{+}$ background, other backgrounds

Partial Waves with
$$J^P = 2^+$$

- $\rho(770) K D$ -wave
- $K^*(892) \pi D$ -wave
- $K_2^*(1430)$ Breit-Wigner parameters
 - $m_0 = 1430.9 \pm 1.4$ (stat.) $^{+3.1}_{-1.5}$ (sys.) MeV/ c^2
 - $\Gamma_0 = 111 \pm 3 \text{ (stat.)}_{-16}^{+4} \text{ (sys.)} \text{ MeV}/c^2$
 - In agreement with previous measurements

 $\pi^{-}\pi^{-}\pi^{+}$ background, other backgrounds

Partial Waves with
$$J^P = 2^+$$

 $2^{+}1^{+}K^{*}(892)\pi D$

COMPASS

2.5

 $\times 10^{6}$

Observed in two decay modes

- *ρ*(770) *K D*-wave
- $K^*(892) \pi D$ -wave
- $K_2^*(1430)$ Breit-Wigner parameters
 - $m_0 = 1430.9 \pm 1.4$ (stat.) $^{+3.1}_{-1.5}$ (sys.) MeV/ c^2
 - $\Gamma_0 = 111 \pm 3 \text{ (stat.)} {}_{-16}^{+4} \text{ (sys.)} \text{ MeV}/c^2$
 - In agreement with previous measurements

Total model, resonances, $K^-\pi^-\pi^+$ non-resonant, $\pi^{-}\pi^{-}\pi^{+}$ background, other backgrounds

2.0

 $m_{K\pi\pi}$ [GeV/ c^2]

1.5

1.0

3.0

Partial Waves with $I^P = 2^-$

PDG 2022

- $K_2(1770)$ and $K_2(1820)$ are established
- $K_2(2250)$ needs further confirmation

Partial Waves with
$$J^P = 2^-$$

- Fitted in 4 decay modes
 - $K^*(892) \pi F$ -wave
 - $\rho(770)\, {\it K}\, {\it F}\text{-wave}$
 - $K_2^*(1430) \pi$ *S*-wave
 - *f*₂(1270) *K S*-wave
- Peak at 1.8 GeV/*c*² described by interference of *K*₂(1770) and *K*₂(1820)
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity distributions and large phase motions among 2⁻ waves

Partial Waves with
$$J^P = 2^-$$

 $1^+0^+\rho(770)KS$

 $2^{-}0^{+}f_{2}(1270)KS$ $\Delta \varphi_{ab} \, [\text{deg}]$ 180 Intensity $[10^4 (GeV/c^2)^{-1}]$ 10 5-90-180180 1.0 1.5 2.0 2.515 $0^+ f_2(1270) KS$ 90 10-90-1802.0 2.5 100 COMPASS Ś $0.15 \le t' \le 0.24 \, (\text{GeV}/c)$ $^{+0+}\rho^{(770)K}$ Total model Resonance componen 50 -resonant component Effective background 1.0 1.5 2.0 2.5 3.0 $m_{K\pi\pi}$ [GeV/ c^2]

 $2^{-}0^{+}K_{2}^{*}(1430)\pi S$

Fitted in 4 decay modes

- *K**(892) *π F*-wave
- *ρ*(770) *K F*-wave
- $K_{2}^{*}(1430) \pi$ S-wave
- f₂(1270) K S-wave
- Peak at 1.8 GeV/c² described by interference of $K_2(1770)$ and $K_2(1820)$
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity distributions and large phase

Partial Waves with
$$J^P = 2^-$$

 $1^+0^+\rho(770)KS$

 $2^{-}0^{+}f_{2}(1270)KS$

 $\Delta \varphi_{ab} \, [\text{deg}]$ 80 Intensity $[10^4 (GeV/c^2)^{-1}]$ 10 5-90-180180 1.0 1.5 2.0 2.515 $0^+ f_2(1270)KS$ 90 10-90-1802.0 2.5 COMPASS 100 Ś $0.15 \le t' \le 0.24 \, (\text{GeV}/c)$ $^{+0+}\rho^{(770)K}$ Total model sonance componer 50 Effective background 1.0 1.5 2.0 2.5 3.0 $m_{K\pi\pi}$ [GeV/ c^2]

 $2^{-}0^{+}K_{2}^{*}(1430)\pi S$

- Fitted in 4 decay modes
 - $K^*(892) \pi F$ -wave
 - $\rho(770) K F$ -wave
 - $K_2^*(1430) \pi S$ -wave
 - *f*₂(1270) *K S*-wave
- Peak at 1.8 GeV/*c*² described by interference of *K*₂(1770) and *K*₂(1820)
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity distributions and large phase motions among 2⁻ waves

Partial Waves with
$$J^P = 2^-$$

 $K_2(1770)$ and $K_2(1820)$

- $K_2(1770)$ and $K_2(1820)$ considered only in 3 previous analyses
- Only LHCb could confirm 2 states with 3σ significance
- COMPASS observes 2 states with 11σ statistical significance

Partial Waves with
$$J^P = 2^-$$

 $K_2(1770)$ and $K_2(1820)$

- $K_2(1770)$ and $K_2(1820)$ considered only in 3 previous analyses
- Only LHCb could confirm 2 states with 3σ significance
- COMPASS observes 2 states with 11σ statistical significance

Partial Waves with
$$J^P = 2^-$$

 $K_2(1770)$ and $K_2(1820)$

- $K_2(1770)$ and $K_2(1820)$ considered only in 3 previous analyses
- Only LHCb could confirm 2 states with 3σ significance
- COMPASS observes 2 states with 11σ statistical significance

 $K_2(1770), K_2(1820), \text{ and } K_2(2250)$

- $K_2(2250)$ so far studied mainly in $\Lambda \bar{p}$ and $\bar{\Lambda} p$ decay channel
- COMPASS: first simultaneous measurement of $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$
- $K_2(2250)$ parameters consistent with previous measurements

 $K_2(1770), K_2(1820), \text{ and } K_2(2250)$

- $K_2(2250)$ so far studied mainly in $\Lambda \bar{p}$ and $\bar{\Lambda} p$ decay channel
- COMPASS: first simultaneous measurement of $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$
- K₂(2250) parameters consistent with previous measurements

PDG 2022

- K(1460) is established
- K(1630) and K(1830) need confirmation

- K(1630) seen by only one experiment
 - Width is only 16 MeV/c²
 - Unknown J¹

PDG 2022

• K(1460) is established

• K(1630) and K(1830) need confirmation

- K(1630) seen by only one experiment
 - Width is only 16 MeV/c²
 - Unknown J^P

• Peak at about 1.4 GeV/c² described by established *K*(1460)

- But region $m_{K\pi\pi} \lesssim 1.5 \,{\rm GeV}/c^2$ affected by known analysis artifacts
- K(1460) parameters fixed to LHCb result

EPJC 78 (2018) 443

- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase motion.
- Small bump below 2.0 GeV/c²
 - Described by K(1830) with 5.4 σ statistical significance

Lefferson Lab

• Peak at about 1.4 GeV/c² described by established *K*(1460)

- But region $m_{K\pi\pi} \lesssim 1.5 \,{\rm GeV}/c^2$ affected by known analysis artifacts
- K(1460) parameters fixed to LHCb result

EPJC 78 (2018) 443

- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3σ statistical significance
 - Accompanied by rising phase motion
- Small bump below 2.0 GeV/c²
 - Described by K(1830) with 5.4 σ statistical significance

efferson Lab

son National Accelerator Facility

Jefferson Lab

- Peak at about 1.4 GeV/c² described by established *K*(1460)
 - But region $m_{K\pi\pi} \lesssim 1.5\,{\rm GeV}/c^2$ affected by known analysis artifacts
 - K(1460) parameters fixed to LHCb result

EPJC 78 (2018) 443

- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3σ statistical significance
 - Accompanied by rising phase motion
- Small bump below 2.0 GeV/c²
 - Described by K(1830) with 5.4 σ statistical significance

• Peak at about 1.4 GeV/c² described by established *K*(1460)

- But region $m_{K\pi\pi} \lesssim 1.5 \,{\rm GeV}/c^2$ affected by known analysis artifacts
- K(1460) parameters fixed to LHCb result

EPJC 78 (2018) 443

- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase motion
- Small bump below 2.0 GeV/c²
 - Described by K(1830) with 5.4 σ statistical significance

ferson Lab

National Accelerator Facility

Partial Waves with $J^P = 0^-$ K(1630) and K(1830)

K(1830) parameters in good agreement with LHCb measurement
 K(1630):

- Mass in agreement with previous measurement
 Karnaukhov et al., Phys. Atom. Nucl. 61 (1998) 61
- More reasonable width value of $\Gamma_0 = 140 \pm 20$ (stat.) ± 50 (sys.) MeV/ c^2

Partial Waves with $J^P = 0^-$ *K*(1630) and *K*(1830)

- *K*(1830) parameters in good agreement with LHCb measurement
 K(1630):
 - Mass in agreement with previous measurement Karnaukhov et al., Phys. Atom. Nucl. 61 (1998) 61
 - More reasonable width value of $\Gamma_0 = 140 \pm 20$ (stat.) ± 50 (sys.) MeV/ c^2

- Indications for 3 excited K states extracted simultaneously in a single fit
- Quark model predicts only 2 excited states in this mass region
- K(1460) and K(1830) are good $q\bar{q}$ candidates

- *K*(1630) is supernumerary state
- Candidate for exotic non-qq state
- But other explanations not excluded, e.g. state is close to $K^*(892)\omega(782)$ threshold

Summary

The strange-meson spectrum

- Many states require further confirmation or have not been found yet
- Search for strange partners of exotic non-strange light-mesons

Summary

COMPASS

- Most detailed and comprehensive analysis of the $K^-\pi^-\pi^+$ final state so far
- Supernumerary kaon state with $J^P = 0^- \implies$ candidate for exotic strange meson

Summary

Planned experiment: AMBER at CERN

- Proposal for high-precision strange-meson spectroscopy
- Goal: collect 10 to 20 × 10⁶ $K^-\pi^-\pi^+$ events using high-intensity high-energy kaon beam

Part II

Backup Slides

Contraction Contra

Boris Grube, Jefferson Lab — Kaon Spectroscopy at COMPASS

Partial-Wave Analysis of $K^-\pi^-\pi^+$ at COMPASS

PWA Model

- Sum of partial-wave amplitudes
- Wave set:
 - Spin $J \leq 7$
 - Orbital angular momentum $L \leq 7$
 - Positive naturality of the exchange particle
 - 12 isobar resonances:
 - $[K\pi]_S^{K\pi}, [K\pi]_S^{K\eta}, K^*(892), K_2^*(1430), K^*(1680), K_3^*(1780)$
 - $[\pi\pi]_S, f_0(980), f_0(1500), \rho(770), f_2(1270), \rho_3(1690)$

Resonances with
$$J^P = 1^+$$

Resonances with
$$J^P = 2^+$$

Resonances with
$$J^P = 3^+$$

Resonances with
$$J^P = 4^+$$

Resonances with
$$J^P = 4^-$$

