THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$K_L + p \rightarrow \pi^+ + \Lambda$

MARSHALL B. C. SCOTT

HTTPS://WWW.LINKEDIN.COM/IN/MARSHALL-SCOTT-PH-D-17AB191B9

KL4 RXN AND GENERATING STEPS

- KI4 : K⁰_L+ p $\rightarrow \pi^+$ + A $-\Lambda \rightarrow$ p + π^- (63.9%) ; Current priority $-\Lambda \rightarrow$ n + π^0 (35.8%)
- Backgrounds : (Primary) $K^0_L + p \rightarrow \pi^+ + \Sigma^0$, (Secondary) $K^0_L + p \rightarrow K^+ + \Xi^0$
- Generated histograms/root files (Monitoring Histograms, ReactionFilter, mcthrown_tree)
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=monitoring_hists foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=ReactionFilter –PReaction1=10_14__8_18 foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=mcthrown_tree foo_smeared.hddm

ZERO MASS

- There are some thrown pis that have zero mass even when aP != 0.
- About a third of events have a pi- mass of zero.
- For all studies after this one the M > 0 applies to protons and pi+.

MISIDENTIFICATION RATES

- For the purposes of the following studies, I am using identification as the reconstructed vector closest to the true vector.
- Momentum and position were used as variables.
- Using momentum most of the events have a good match.
- Using position, ~20% have a bad match.
- The M > 0 cut on all thrown particles decreases this rate.

$$\Delta_{true,rec} = |p_{true} - p_{rec}|$$

 $\Delta_{tp,rp} < \Delta_{tp,r\pi} \rightarrow Good match$

M. B. C. Scott

4

MISID : MOMENTA COMPONENTS

- For the x and y components, the misID rate is about 50%.
- However the misID rate for the Z position of the pion is ~93%.

Jefferson Lab

MISID : RESOLUTION

- Looking at the resolution, it becomes clear that the pi+ and proton have poor resolution for events that are misIDed using position.
- The lambda mass distributions are slightly modified.
- The bottom row with mass fits are in the backup slides.
 - In short the position misidentified events have a slightly larger width.

WASHINGTON, DC

MISID : ENERGY DEPENDENCE

 No strong energy dependence seen.

7

MISID : MASS DISTRIBUTIONS

- Below are plots of the lambda mass distribution as a function of cuts.
- The last plot shows the mass distribution with all misidentified protons swapped with pi+s.

MISID : COMBINATIONS

- The plot shows the different possible cases
 - -A: Good Proton, Good pi+
 - -B: Good Proton, Bad pi+
 - -C : Bad Proton, Good pi+
 - -D: Bad Proton, Bad pi+
- The position variables again have higher misID rates than the momentum.
- Also there are a significant fraction of events with a Bad proton and a Good pi+.

on Lab

9

M. B. C. Scott

αP : Mass cut dependence

- Plots to the right show the extracted αP for the Λ with and without the mass cut (p, π^+ , and π^- masses > 0).
- Across the board, the mass cut increases the polarization, but the difference is consistent with zero.

3.5 P_{beam} WASHINGTON, DC

[GeV]

← ∆_{Thrown}

3.5 P_{beam}

 Δ_{Thrown}

 $\Delta_{\text{Reconstructed}}$

[GeV]

2.5 3

2

2 2.5 3 $\Delta_{\text{Reconstructed}}$

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Backup Slides

ENERGY DEPOSIT

No real trend

Jefferson Lab

MISID : TRANSVERSE VARIABLES

 The transverse momenta and position mirror the results on the previous slide

MISID : MOMENTA COMPONENTS

- For the x and y components, the misID rate is about 50%.
- However the misID rate for the Z position of the pion is ~93%.

Jefferson Lab

MISID : FITTED LAMBDA MASS DISTRIBUTIONS

LAMBDA Z RESOLUTIONS

M. B. C. Scott

WASHINGTON, DC

SIGMA Z RESOLUTIONS

WASHINGTON, DC

MISID FOM

 No strong dependence

18

M. B. C. Scott

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

MISID : CHANNELS

- No real differences in misID rates across all channels
- Remember pi+ is really k+ for xi0.

MISID : CHI²

 No strong chi² distribution differences.

MISID : MOMENTA DISTRIBUTIONS

Jefferson Lab

No effect

Advanced MisID

 Expanding the notion of identification to be that the distance between the true and recon. vector must be the smallest distance between the 3 possible distances shows that no particles are a "perfect" id match.

Good Proton :
$$\Delta_{tprp} < \Delta_{tpr\pi} \& \Delta_{tprp} < \Delta_{t\pi rp}$$

Good π^+ : $\Delta_{t\pi r\pi} < \Delta_{t\pi rp} \& \Delta_{t\pi r\pi} < \Delta_{tpr\pi}$

M. B. C. Scott

THE GEORGE

LAMBDA MASS WITH AND WITHOUT MASS CUTS

 The removal of events where one of the true masses is zero changes the width of the mass distribution slightly.

