
Trigger for the KLF Experiment

A. Somov, Jefferson Lab

KLF Collaboration Meeting, February 12, 2020

- GlueX Trigger Architecture
- GlueX Trigger Performance
- Trigger Requirements for the KLF Experiment

GlueX Trigger Architecture

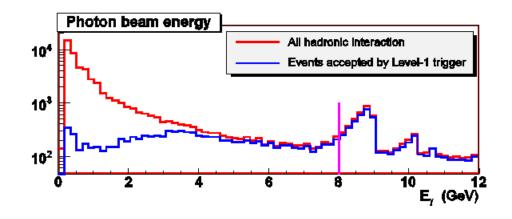
- Pipelined readout electronics:
 fADC, F1TDC, CAEN TDC, SSP (pipeline ~3.6 µs)
- Two data streams: readout and trigger

Detectors Integrated to the Trigger

```
Forward Calorimeter (FCAL) (Energy deposition)

Barrel Calorimeter (BCAL) (Energy deposition)

Compton Calorimeter (CCAL) (Energy deposition)


Pair Spectrometer (Hits)

Start Counter (Hits)

Time of Flight (Hits)
```

GlueX Trigger

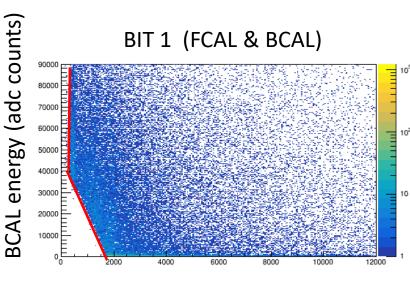
- Minimum bias trigger for the search of exotic meson candidates
 - different final states of exotic candidates
 - beam energy range of interest: 8.4 GeV 9.1 GeV
 - trigger efficiency between 90 % and 100 % for most reactions
 - trigger rate: 80 kHz
- Background types:
 - electromagnetic
 - low-energy hadronic interactions

Trigger Types for GlueX

Physics triggers:

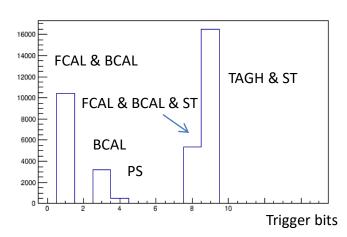
Main production trigger (FCAL & BCAL)

$$E_{FCAL} + 0.5 E_{BCAL} > 0.5 GeV$$

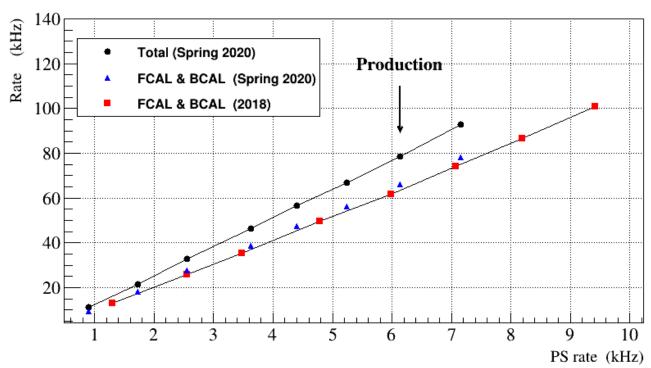

Pair Spectrometer trigger (luminosity)

$$(E_{FCAL} + E_{BCAL})$$
 & ST

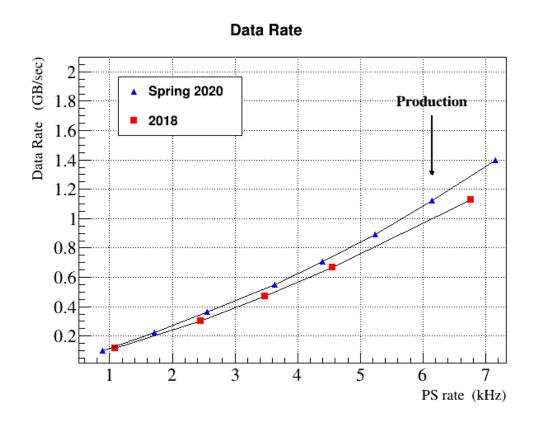
TAGH & ST


Monitoring triggers:

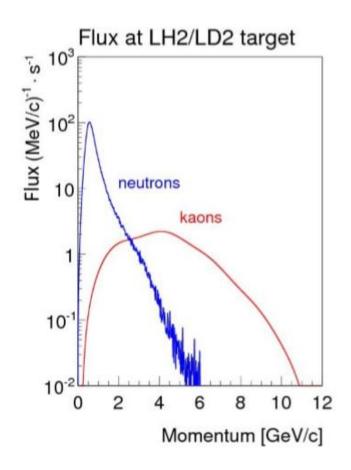
FCAL, BCAL LED triggers (10 Hz), DIRC LED Random (100 Hz)


FCAL energy (adc counts)

Example of trigger bits


Performance in Spring 2020

Trigger Rate (JD70-105 radiator)


- Taking data at a trigger rate of **80 kHz**, live time 91%, stable run conditions
- Photon flux: about $5x10^7 \text{ y/sec}$ in the coherent peak energy range between 8.4-9.1 GeV

Performance in Spring 2020

Data rate in GlueX production runs about 1.1 Gb/sec

KLF Trigger Requirements

 Rate of K_L and neutrons on the LH2 / LD2 targets:

> 10⁴ KL/s and 6x10⁴ n/s (other background, muons, soft photons – expected to be relatively small?)

- Target thickness: 3.6 % R.L.
- Can use an open trigger (accept all target induced interaction)
- Require a hit in the ST/TOF or some energy deposition in calorimeters to select target-induced interactions

Trigger types for KLF:

Trigger from the luminosity monitor
Physics triggers (can use different types depending on reactions)

Reaction	Statistics
	(events)
$K_L p o K_S p$	2.7M
$K_L p o \pi^+ \Lambda$	7M
$K_L p o K^+ \Xi^0$	2M
$K_L p o K^+ n$	60M
$K_L p o K^- \pi^+ p$	7 M

Discussion

- Trigger hardware used by the GlueX experiment satisfies requirements of the KLF experiment
- The trigger rate of the KLF experiment is expected to be relatively small
 - Simple algorithm can be used to identify target-induced interactions
 - Several trigger types can be implemented (Luminosity trigger, physics triggers)