

Additional physics potential with K_L beam

Mikhail Bashkanov

Outlook

- BEYOND KLF PROGRAM
 - CP-violation with Flux Monitor
 - K_L beta decay
 - Neutron absorption cross section

CP in K_L UNIVERSITY π^+ π^{-} K^0 \overline{K}^0 v_e $\begin{array}{c} K^0 \rightarrow \pi^- e^+ \nu_e \\ \overline{K^0} \rightarrow \pi^+ e^- \overline{\nu_e} \end{array} \end{array}$ 1 $\frac{1}{\sqrt{2(1+|\epsilon|^2)}} \left((1+\epsilon)K^0 - (1-\epsilon)\overline{K^0} \right)$ K_L

 $|\epsilon| \sim 10^{-3} \rightarrow CP$ is violated !

CP in K_L UNIVERSITY π^+ π^{-} K^0 \overline{K}^0 v_e $\begin{array}{c} K^0 \rightarrow \pi^- e^+ \nu_e \\ \overline{K^0} \rightarrow \pi^+ e^- \overline{\nu_e} \end{array} \end{array}$ $\frac{1}{\sqrt{2(1+|\epsilon|^2)}} \left((1+\epsilon)K^0 - (1-\epsilon)\overline{K^0} \right)$ K_L

 $|\epsilon| \sim 6.6 \cdot 10^{-3} \rightarrow CP$ is violated !

A = 13.6%

~1 decay per hour with KLF FM

sino cos o

PRL 84 (2000) 408

 $A = \frac{N_{\sin\phi\cos\phi} > 0.0 - N_{\sin\phi\cos\phi} < 0.0}{N_{\sin\phi\cos\phi} > 0.0 + N_{\sin\phi\cos\phi} < 0.0}$

Rare decays

- Physics beyond SM
 - Rare final state
 - Precise calculations

Rare decays

- Physics beyond SM
 - Rare final state
 - Precise calculations

 $M(K_L) = 497.611 \, MeV$ $M(K^{+/-}) = 493.696 \, MeV$ $M(e^{+/-}) = 0.511 \, MeV$ Available Phase Space **3.4 MeV**

 $\begin{array}{l} K_L \rightarrow K^+ e^- \overline{\nu_e} \\ K_L \rightarrow K^- e^+ \nu_e \end{array}$

BUT!!!

- In flight decay (boosted)
- Can build dedicated detector
- $Br(K^0 \to K^{\pm} e^{\mp} \nu) \sim 10^{-9}$ (N.N. Shishov, Yad. Fyz. 82, 86, (2019))
- ~50 decays per beamtime

Rare decays

Beam dump station

- Neutron absorption cross section measurement
 - Over large range
 - Various materials
 - One beam (no relative normalisation issues)

• Space science

Hypernuclei?

Conclusion

- What else can we do?
- Do we need any modifications to perform better?
- New equipment for side projects?