Be-Target Assembly for ERR-I: Conceptual Design & Radiation Effects

Igor Strakovsky^{*)} & Vitaly Baturin^{**)}

*)The George Washington University **)Old Dominion University

- ERR-I charge for KPT.
- Kaon beamline.
- Collimator Hall setting.
- Equivalent dose rate for Exp Hall.
- Optimization KPT.
- Prompt dose rate for Collimator Hall.
- Activation dose rate for Collimator Hall.
- Radiation budget above ground.

DE-SC0016583

Experiment Readiness Review Phase I Jefferson Lab, 2023 Charge

Hall D 🍲 E12-19-001 ERR Phase I Jefferson Lab, 2023 Charge

- What is status of *Kaon Production Target* (*KPT*)? Specifically:
 - a) Conceptual design.
 - b) Evaluation of produced radiation. In particular, following points should be discussed:
 - 1. Approximations made in MC simulations & which code has been used;
 - 2. Energy deposition & temperature in *KPT*;
 - 3. Prompt dose & activation around *KPT* & *Cave*;
 - 4. Water-cooling system & possible contaminations.
- Will civil constructions be needed in *Cave* to contain radiation?
- What is decommissioning plans for *KPT* & activated components? A brief outline is sufficient.

- Geometry of Experimental & Collimator Halls came from Timothy Whitlatch.
- Engineering design, water cooling, & contamination were done by Timothy Whitlatch.
- RadCon calculations were under Pavel Degtyarenko & Lorenzo Zana suggestions.

ERR-I, February 2023

Hall D: Beam Line for K-long

• Electrons (**3.1 x 10¹³** e/sec) are hitting Cu-radiator @ **CPS** located in Tagger Hall.

• For neutron & gamma calculations, we use **MCNPS** radiation transport code.

Hall D Setting - 2 RadCon limit = 1 mrem/h

Hall D Setting - 3 RadCon limit = 1 mrem/h

Hall D Setting - 4 RadCon limit = 1 mrem/h

2/9/2023

Hall D Setting - 5 RadCon limit = 1 mrem/h

Equivalent Dose Rate for Experimental Hall

Hall D Setting & Equivalent Dose Rate - 1

<mark>RadCon limit =1 mrem/h</mark>

Hall D Setting & Equivalent Dose Rate - 2 RadCon limit = 1 mrem/h

Hall D Setting & Equivalent Dose Rate - 3 RadCon limit = 1 mrem/h

Hall D Setting & Equivalent Dose Rate - 4 RadCon limit = 1 mrem/h

Hall D Setting & Equivalent Dose Rate - 5 RadCon limit = 1 mrem/h

Hall D Setting & Dose Rate - 6 RadCon limit = 1 mrem/h

• Radiation in *Experimental Hall* is under *allowed* limits.

ERR-I, February 2023

Gammas on face of Be-target

Be-Target Assembly - 1

Be-Target Assembly - 2 RadCon limit = 1 mrem/h

xy-cross section, x-dimension

2/9/2023

Be-Target Assembly - 3

<mark>RadCon limit =1 mrem/h</mark>

xy-cross section, x-dimension

Be-Target Assembly - 4 RadCon limit = 1 mrem/h

xy-cross section, x-dimension

Prompt Plots

Prompt Dose Equivalent in Collimator Hall

2/9/2023

Activation Dose @ KPT

• Collimator Hall's decommission requires 1-2 months.

All other modifications in Cave are restored to Guiltée

• KPT is kept in *Cave* & moved sideways.

Equivalent dose: $10^5 \text{ pSv/s} = 36 \text{ mrem/h}$

Radiation Budget on Ground above Tagger Hall

RadCon limit =1 mrem/h

 $E_{\gamma} = 12 \text{ GeV } I_e = 5 \mu \text{A}$ OD_y = 1 mm No electrons beyond Cu-radiator

• Radiation *above ground from CPS to Cryo target* is under *allowed* limits.

Expected Electron/Photon/Kaon Beam Conditions @ 🚸 Experiment

Property	Value
Electron beam current (μ A)	5
Electron flux at CPS (s^{-1})	$3.1 imes 10^{13}$
Photon flux at Be-target $E_{\gamma} > 1500 \text{ MeV} (s^{-1})$	$4.7 imes 10^{12}$
K_L beam flux at cryogenic target (s^{-1})	1×10^4
K_L beam σ_p/p @ 1 GeV/c (%)	~ 1.5
K_L beam σ_p/p @ 2 GeV/c (%)	~ 5
K_L beam nonuniformity (%)	< 2
K_L beam divergence (°)	< 0.15
$K^0/\overline{K^0}$ ratio at Be-target	2:1
Background neutron flux at cryogenic target (s^{-1})	$6.6 imes 10^5$
Background γ flux at cryogenic target (s ⁻¹), $E_{\gamma} > 100 \text{ MeV}$	$6.5 imes 10^5$

Collimator & Experimental Halls

Why Be was Selected for KPT RadCon limit = 1 mrem/h

• Previous **SLAC** studies shown that **Be** is optimal material for kaon photoproduction.

• Previous SLAC studies shown that W has low absorption factor for K_L .

G.W. Brandenburg et al, Phys Rev D 7, 708 (1973)

Optimization of Be Target Length

• Yield of kaons from W-plug was estimated to be negligible, well below 1% of kaons produced in **Be**-target.

ERR-I, February 2023