

Meson Spectroscopy with Neutral Kaon Beam

Marouen Baalouch Old Dominion University/JLab

*K*π Production

- The equivalent reaction of $K_L p \rightarrow K^*(892)^0 p$ with charged Kaons beam:
 - → $K^+ p \to K^*(892)^+ p$
 - $K^-p \rightarrow K^*(892)^-p$
- Charge independence and Clebsch-Gordan-Coefficient consideration indicate that:
 - σ(K⁻p → K^{*}(892)⁰n) > σ(K⁻p → K^{*}(892)⁻p).
- The pheno study on neutral exchange production, with charged kaon beam, using Regge model showed a good agreement with the experimental results.
- The new simulation is based on Regge Model described by Nucl.Phys.B10(1969) 151-168.
- More details can be found in the updated proposal (ongoing).

$K\pi$ Production

Generated Monte-Carlo using Regge Model (500 kevents):

25/04/18

$K\pi$ Production

Reconstructed+Selected MC (integrated efficiency = 13.7%):

25/04/18

Resolution

• Relative resolution ($\Delta x/x$) of the main variables used in the scattering study (4-momentum transfer & $K\pi$ invariant mass):

- The average resolution of -*t* is ~ 0.02 GeV² which is sufficient to improve the binning resolution of the previous experimental studies, where the binning varies between 0.02 and 0.05 GeV² (references can be found in the updated proposal).
- The average resolution of the invariant mass $\sim 10 \text{ MeV/c}^2$.

Efficiency

Reconstruction + selection efficiency:

Efficiency

Reconstruction + selection efficiency (integrated over beam momentum):

Event Estimation

- The two main studies that are expected to be performed on $K\pi$ system:
 - → Scattering study of $K\pi \rightarrow K\pi$ interaction (Form factor measurement, kappa investigation ...): require -t < 0.2 to ensure pion exchange.
 - Production mechanism study and PWA: require beam momentum binning.
- The expected number of events for beam momentum *p* is estimated as:

 $N(p) = \sigma_{K^*}(p) \times BR(K^* \rightarrow K^+ \pi^-) \times n_K n_t T \times \epsilon_{tot}(p) \times \epsilon_{\pi}(p)$

- ε_{π} : low -t range selection efficiency.
- *e.g.*: For 0.14 <-t< 0.2 GeV², 2.20 3</sup> events, which is ~ # LASS events (all resonance).

 $(\sigma(2,225) \sim 1.2$ mb, BR ~ 1 , $n_k = 10^4$, $n_t = 1.68$, $\varepsilon_{\pi} = 0.179$)

• $N_{tot} = 2 \ 10^6$ event of $K_L p \to K^* (892)^0 p$.

Impact on P-wave study

 Use Lass fit results to generate toy MC according to the expected number of event and fit the MC to extract the mass/width/amplitude/phase-shift and compare the results (work ongoing):

Non converged fit, model need to be updated

Backup

Regge Model (Backup)

Cross-section of $K_{L} p \rightarrow K^{+} \pi^{-} p$ function of K_{L} momentum

.

7

8

6

5

Differential cross section do/dt of $K_1 p \rightarrow K^* \pi \bar{p} VS p(K_1)$

25/04/18

[qu] (d) 1.2

0.8

0.6

0.4

0.2

0

2

3

4

11