THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$K_L + p \rightarrow \pi^+ + \Lambda$

MARSHALL B. C. SCOTT

HTTPS://WWW.LINKEDIN.COM/IN/MARSHALL-SCOTT-PH-D-17AB191B9

KL4 RXN AND GENERATING STEPS

- KI4 : K⁰_L + p $\rightarrow \pi^+$ + A $-\Lambda \rightarrow$ p + π^- (63.9%) ; Current priority $-\Lambda \rightarrow$ n + π^0 (35.8%)
- Backgrounds : (Primary) $K^0_L + p \rightarrow \pi^+ + \Sigma^0$, (Secondary) $K^0_L + p \rightarrow K^+ + \Xi^0$
- Generated histograms/root files (Monitoring Histograms, ReactionFilter, mcthrown_tree)
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=monitoring_hists foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=ReactionFilter –PReaction1=10_14__8_18 foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=mcthrown_tree foo_smeared.hddm

BEAM ENERGY RESOLUTION ISSUE FIXED

- The committee mentioned an issue that the mean of the resolution above E > 4 GeV was so large.
- Looking at the code the W < 3 GeV cut was only implemented for the reconstructed data, so there were events where the reconstructed event has W < 3 GeV, but not the thrown event, yielding large mean differences.
- This has been fixed.

BEAM ENERGY RESOLUTION NEW RESULTS

- Below are the updated results.
- The last two energy bins, i.e. 4 < E < 5 GeV and 5 < E < 6 GeV, no longer exist.</p>
- Widths of the surviving bins are comparable to the previous ones.

SELECTION CUTS

- Previous Cuts
 - $\begin{array}{l} \ M_x < 0 \ GeV : [M_x = |K_L + p \Lambda \pi|] \\ \ M_{xt}^2 < 0.081 \ GeV^2 : [M_{xt}^2 = E_x^2 p_{xz}^2] \\ \ P_{xx}, P_{xv} < 0.094 \ GeV \end{array}$
- These cut signal by 10%, while removing the Σ and Ξ backgrounds by 50 and 90%, respectively.
- Studied some machine learning to see if I could improve on the cuts.
- I did an 80/20 train/test split using the Λπ⁺ distributions as signal and the Σπ⁺ as background.
- A list of the training variables is in the backup slides.

MACHINE LEARNING FOR BACKGROUND REMOVAL

- ROC curve shown on the left depicts how well the ML model is at discriminating signal from background, with larger areas reflecting better discrimination.
- The KS (Kolmogorov Smirnov) tests below reflect how comparable the testing and training distributions are in terms of the ML values. A higher percentage reflect more compatibility and therefore less overtraining (p >0.05 is considered fine).

ML RESULTS

BDT

2000

BDTG

FUTURE WORK

- Improve A fit, especially on the right side of the distribution
- A polarization
- A vertexing for background removal
- Studies on misidentified proton/π⁺

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Backup Slides

ML VARIABLES

- Proton : p_x, p_y, p_z, E
- π⁻ : p_x, p_y, p_z, E
- π⁺ : p_x, p_y, p_z, E
- Λ : p_x , p_y , p_z , E, m_T^2 , p_T , E_T^2
- x : p_x, p_y, p_z, E, m, m_T², p_T, E_T²

ML CUT EFFICIENCIES

11

M. B. C. Scott

WASHINGTON, DC

Λ DISTRIBUTIONS

WASHINGTON, DC