Update on Temperature Calculations with Mathematica

Hovanes Egiyan

Overview

- Solved time-dependent Poisson equation for KLCPS64 nominal and x-angled models to determine how fast the hot spot develops.
 - The answer is that it happens very fast, on the order of ~1 second from the moment the beam is established.
 - No large changes within 10 ms is expected
 - We will need to use the accelerators FSD system to turn off the beam when a condition leading to "elevated" temperatures is encountered.
- Looked at some of the FLUKA simulations by Vitaly
 - Vitaly provided the FLUKA output data files with cylindrical grid
 - Nominal beam, beam with FWHM=0.8mm, and horizontally α_{yaw} =0.5mrad angled beam are analyzed.
 - The beam channel model in Mathematica matches the upstream part of the channel description in FLUKA
 - The downstream part z > 240cm seems to be designed more for radiation level control
 - Little impact on temperature distribution
 - Not clear how the cooling would work near magnets with cooling channels at (x,y)=(±5,±7)cm positions.
 - Obtained maximum temperature is low for the nominal beam, only $T_{max} \approx 95$ °C.
 - With a narrow beam transverse profile $T_{max} \approx 130 \text{ }^{O}\text{C}$.
 - Considerably lower T_{max} than $T_{max} \approx 250$ °C from Vitaly's model in February.
 - Mathematica sees ~53KW power in the data file.
 - The discrepancy cannot be due to different cooling (I get T_{max}≈140 °C if I used only two cooling channels instead of four and only consider 60cm z-segment and 5cm x-section of the absorber)
 - There seems to be ~20% less power density per unit z-distance now that in February model.
 - The CPS absorber in the model seems to be surrounded by BLACKHOLE material that absorbs all particle.
 - Unlikely to impact the power distribution
 - Makes radiation level estimations unrealistic.

Time dependence of the temperature

Transition from uniform 40 °C to nominal beam. Hot spot temperature versus time is plotted.

Transition from uniform 40 °C to 1mrad horizontally

shifted beam. Hot spot temperature versus time is plotted.

- About one half of the change in temperature occurs within a time period on the order of 1 second. After that, the temperature slowly reaches the thermal equilibrium temperature in about ~30 seconds.
- We will need to turn the beam off faster than one seconds to avoid temperaturerelated problems.
 - We need to setup FSD signals for conditions that can produce elevated temperatures.

Comparison with FWHM=0.8mm ($\sigma_b \approx 1/3$ mm) beam

Comparison with α_{yaw} =0.5mrad horizontally angled beam

Summary and Outlook

- Time dependence of the hot-spot temperature has been investigated for KLCPS64 model
 - Need to setup FSD-s to protected against conditions that may cause "high" temperatures.
- So far analyzed three configurations from Vitaly
 - Look good , but I do not understand why there is ~100 ^oC difference in T_{max} between current model and February model.
- Need to look at the rest of Vitaly's configurations.
 - We need also rectangular grid data from Vitaly to try to check the results for the nominal setup to understand if this low T_{max} is real.
 - Tim can run ANSYS on it too.
 - It could be much shorted in Z.
- Need to analyze Pavel's KLCPS69 model studies.