KLF@JLab

Moskov Amaryan

Old Dominion University
 Norfolk, VA

STRONG2020, Munich, September 13-16, 2022

Outline

-Introduction

- K_{L} Facility Beamline and Hardware
- Electron Beam
- Compact Photon Source
- Be Target
- Flux Monitor
- K $L_{\text {L }}$ Beam
- $L H_{2} / L D_{2}$ Target
-Physics Motivation
- Hyperon Spectroscopy
- Strange Meson Spectroscopy
- Early Universe

Summary
2

48 ${ }^{\text {th }}$ PROGRAM ADVISORY COMMITTEE (PAC 48)

August 10-14, 2020
September 25, 2020

Recommendations

PAC 48 SUMMARY OF RECOMMENDATIONS								
Number	Contact Person	Title	Hall	Days Req'd	Days Awarded	Scientific Rating	PAC Decision	Topic
C12-18-005	M. Boer	Timelike Compton Scattering Off Transversely Polarized Proton	C	50			C2	4
C12-19-001	M. Amarian	Strange Hadron Spectroscopy with Secondary KL Beam in Hall D	D	200		A-	Approved	1

Title: Strange Hadron Spectroscopy with Secondary KL Beam in Hall D
Spokespersons: M. Amaryan (contact), M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky

Motivation: The spectroscopy of strange baryons and mesons, including their fundamental strong interactions, are the focus of this proposal. New and unique data can be obtained with an intense K_{L} beam aimed at a hydrogen/deuterium target, using the GlueX apparatus to detect final state particles.

Measurement and Feasibility: The proponents have answered all questions outlined in the PAC47 report. Substantial progress has been made on the issues of simulations: details on backgrounds and background reactions have been demonstrated, a demonstration of partial wave analysis for hyperon production was given. The proponents have demonstrated the measuring technique of missing mass reconstruction, allowing them to extend the measuring range both regarding small, four-momentum transfers and isospin decomposition. No show stoppers have been pointed out by the TAC.

Issues: The PAC strongly recommends that the collaboration intensify their cooperation on two issues. (1) Coordinated leadership must be established together with the host laboratory to address the various technical issues connected with the R\&D efforts and construction of the K_{L} beam. (2) Continuous cooperation with JPAC and associated members is recommended for the development of tools to master the challenges connected with the clean extraction of $\mathrm{K} \pi$ scattering, the identification of the exchange processes at small momentum transfers, and the amplitude analysis for Δ final states

Summary: The future K_{L} facility will add a new physics reach to JLab, and the PAC is looking forward to see the idea being materialized, in conjunction with the plans for Hall D as spelled out in the 2019 White Paper. The collaboration should now devote all its energy to turn this challenging project into an experimental facility and in parallel prepare for a successful data analysis.

This happens because of strong support and dedicated efforts of the KLF Collaboration

comprised of 160 physicists from 68 Universities across 19 countries worldwide

Strange Hadron Spectroscopy with Secondary K_{L} Beam in Hall D

Experimental Support:

Shankar Adhikari ${ }^{43}$, Moskov Amaryan (Contact Person, Spokesperson) ${ }^{43}$, Arshak Asaturyan ${ }^{1}$, Alexander Austregesilo ${ }^{49}$, Marouen Baalouch ${ }^{8}$, Mikhail Bashkanov (Spokesperson) ${ }^{63}$, Vitaly Baturin ${ }^{43}$, Vladimir Berdnikov ${ }^{11,35}$, Olga Cortes Becerra ${ }^{19}$, Timothy Black ${ }^{60}$, Werner Boeglin ${ }^{13}$, William Briscoe ${ }^{19}$, William Brooks ${ }^{54}$, Volker Burkert ${ }^{49}$, Eugene Chudakov ${ }^{49}$, Geraint Clash ${ }^{63}$, Philip Cole ${ }^{32}$, Volker Crede ${ }^{14}$, Donal Day ${ }^{61}$, Pavel Degtyarenko ${ }^{49}$,
Alexandre Deur ${ }^{49}$, Sean Dobbs (Spokesperson) ${ }^{14}$, Gail Dodge ${ }^{43}$, Anatoly Dolgolenko ${ }^{26}$, Simon Eidelman ${ }^{6,41}$, Hovanes Egiyan (JLab Contact Person) ${ }^{49}$, Denis Epifanov ${ }^{6,41}$,
Paul Eugenio ${ }^{14}$, Stuart Fegan ${ }^{63}$, Alessandra Filippi ${ }^{25}$, Sergey Furletov ${ }^{49}$, Liping Gan ${ }^{60}$,
Franco Garibaldi ${ }^{24}$, Ashot Gasparian ${ }^{39}$, Gagik Gavalian ${ }^{49}$, Derek Glazier ${ }^{18}$, Colin Gleason ${ }^{22}$,
Vladimir Goryachev ${ }^{26}$, Lei Guo ${ }^{14}$, David Hamilton ${ }^{11}$, Avetik Hayrapetyan ${ }^{17}$, Garth Huber ${ }^{53}$, Andrew Hurley ${ }^{56}$, Charles Hyde ${ }^{43}$, Isabella Illari ${ }^{19}$, David Ireland ${ }^{18}$, Igal Jaegle ${ }^{49}$,
Kyungseon Joo ${ }^{57}$, Vanik Kakoyan ${ }^{1}$, Grzegorz Kalicy ${ }^{11}$, Mahmoud Kamel ${ }^{13}$, Christopher Keith ${ }^{49}$, Chan Wook Kim ${ }^{19}$, Eberhard Klemp ${ }^{5}$, Geoffrey Krafft ${ }^{49}$, Sebastian Kuhn ${ }^{43}$, Sergey Kuleshov ${ }^{2}$, Alexander Laptev ${ }^{33}$, Ilya Larin ${ }^{26,59}$, David Lawrence ${ }^{49}$, Daniel Lersch ${ }^{14}$, Wenliang Li ${ }^{56}$,
Kevin Luckas ${ }^{28}$, Valery Lyubovitskij ${ }^{50,51,52,54}$, David Mack ${ }^{49}$, Michael McCaughan ${ }^{49}$, Mark Manley ${ }^{30}$, Hrachya Marukyan ${ }^{1}$, Vladimir Matveev ${ }^{26}$, Mihai Mocanu ${ }^{63}$, Viktor Mokeev ${ }^{49}$, Curtis Meyer ${ }^{9}$, Bryan McKinnon ${ }^{18}$, Frank Nerling ${ }^{15,16}$, Matthew Nicol ${ }^{63}$, Gabriel Niculescu ${ }^{27}$,
Alexander Ostrovidov ${ }^{14}$, Zisis Papandreou ${ }^{53}$, KiJun Park ${ }^{49}$, Eugene Pasyuk ${ }^{49}$, Peter Pauli ${ }^{18}$,
Lubomir Pentchev ${ }^{49}$, William Phelps ${ }^{10}$, John Price ${ }^{7}$, Jörg Reinhold ${ }^{13}$,
James Ritman (Spokesperson) ${ }^{28,68}$, Dimitri Romanov ${ }^{26}$, Carlos Salgado ${ }^{40}$, Todd Satogata ${ }^{49}$,
Susan Schadmand ${ }^{28}$, Amy Schertz ${ }^{56}$, Axel Schmidt ${ }^{19}$, Daniel Sober ${ }^{11}$, Alexander Somov ${ }^{49}$, Sergei Somov ${ }^{35}$, Justin Stevens (Spokesperson) ${ }^{56}$, Igor Strakovsky (Spokesperson) ${ }^{19}$,

Victor Tarasov ${ }^{26}$, Simon Taylor ${ }^{49}$, Annika Thiel ${ }^{5}$, Guido Maria Urciuoli ${ }^{24}$, Holly Szumila-Vance ${ }^{19}$, Daniel Watts ${ }^{63}$, Lawrence Weinstein ${ }^{43}$, Timothy Whitlatch ${ }^{49}$, Nilanga Wickramaarachchi ${ }^{43}$, Bogdan Wojtsekhowski ${ }^{49}$, Nicholas Zachariou ${ }^{63}$, Jonathan Zarling ${ }^{53}$, Jixie Zhang ${ }^{61}$

Theoretical Support:
Alexey Anisovich ${ }^{5,44}$, Alexei Bazavov ${ }^{38}$, Rene Bellwied ${ }^{21}$, Veronique Bernard ${ }^{42}$,
Gilberto Colangelo ${ }^{3}$, Aleš Cieplýy ${ }^{46}$, Michael Döring ${ }^{19}$, Ali Eskanderian ${ }^{19}$, Jose Goity ${ }^{20,49}$,
Helmut Haberzettl ${ }^{19}$, Mirza Hadžimehmedovici ${ }^{55}$, Robert Jaffe ${ }^{36}$, Boris Kopeliovich ${ }^{54}$,
Heinrich Leutwyler ${ }^{3}$, Maxim Mai ${ }^{19}$, Terry Mart ${ }^{65}$, Maxim Matveev ${ }^{44}$, Ulf-G. Meißner ${ }^{5}, 29$, Colin Morningstar ${ }^{9}$, Bachir Moussallam ${ }^{42}$, Kanzo Nakayama ${ }^{58}$, Wolfgang Ochs ${ }^{37}$, Youngseok Oh^{31}, Rifat Omerovic ${ }^{55}$, Hedim Osmanović ${ }^{55}$, Eulogio Oset ${ }^{62}$, Antimo Palano ${ }^{64}$, Jose Peláez ${ }^{34}$, Alessandro Pilloni ${ }^{66,67}$, Maxim Polyakov ${ }^{48}$, David Richards ${ }^{49}$, Arkaitz Rodas ${ }^{49,56}$, Dan-Olof Riska ${ }^{12}$, Jacobo Ruiz de Elvira ${ }^{3}$, Hui-Young Ryu ${ }^{45}$, Elena Santopinto ${ }^{23}$, Andrey Sarantsev ${ }^{5,44}$, Jugoslav Stahov ${ }^{55}$, Alfred Švarc ${ }^{47}$, Adam Szczepaniak ${ }^{22,49}$, Ronald Workman ${ }^{19}$, Bing-Song Zou ${ }^{4}$

Thomas Jefferson National Accelerator Facility Newport News, Virginia, Aerial View.

Continuous Electron Beam Acccelerator Facility (CEBAF)

12 GeV Electron Beam

Hall-D beamline and GlueX Setup

https://arxiv.org/pdf/2008.08215.pdf

K_{L} Beam Flux

JLab 12 GeV

Electron Beam Parameters

$$
\begin{aligned}
& E_{e}=12 \mathrm{GeV} \quad I=5 \mu \mathrm{~A} \\
& \text { Bunch spacing } 64 \mathrm{~ns} \\
& 128 \text { ns confirmed feasible } \\
& 14
\end{aligned}
$$

5.7 K_{L} Momentum Determination and Beam Resolution

The mean lifetime of the K_{L} is $51.16 \mathrm{nsec}(c \tau=15.3 \mathrm{~m})$ whereas the mean lifetime of the K^{-}is $12.38 \mathrm{nsec}(c \tau=3.7 \mathrm{~m})$ [1]. For this reason, it is much easier to perform measurements of $K_{L} p$ scattering at low beam energies compared with $K^{-} p$ scattering.

Figure 30: Left: Time resolution $\left(\sigma_{t}\right)$ for K_{L} beam as a function of K_{L}-momentum. Middle: Momentum resolution $\left(\sigma_{p} / p\right)$ as a function of momentum (note, log scale). Right: Energy resolution $\left(\sigma_{W}\right)$ as a function of energy. The dashed line shows approximate W resolution from reconstruction of the final-state particles.

We can do it, but why?

- Why to use kaon beam? What is the advantage compared to electrons or photons?
- What is so special about K-long compared to charged kaon beams?
- What is the advantage of producing secondary kaon beam with EM probe, compared to the proton beam?
- How much CEBAF accelerator could make a breakthrough compared to previous results at SLAC?
- Why to do this experiment, what are we going to learn?
- How will it affect our knowledge on hyperon spectroscopy?
- What are we going to learn about strange meson spectroscopy?
- Many more questions - some constructive and some less so answers to which shaped the approved proposal.

Hyperon Spectroscopy

LQCD in addition to already known states predicts many more including hybrids (thick bordered)

Edwards, Mathur, Richards and Wallace, Phys. Rev. D 87, 054506 (20I3)

Measurements on Proton Target

Bonn-Gatchina PWA

Total Cross Section $\quad K_{L} p \rightarrow K^{+} \Xi^{0}$

Need 100 days of running to get precise solution

Bonn-Gatchina PWA

Diff. Cross Section

Polarization

Need 100 days of running to get precise solution

Search for Hyperon Resonances with PWA

For Scattering experiments on both proton \& neutron targets one needs to determine:
-differential cross sections
-self polarization of strange hyperons
-perform Partial Wave Analysis
-look for poles in complex energy plane
-identify excited hyperons with masses up to 2500 MeV In a formation and production reactions

$$
\Lambda^{*}, \Sigma^{*}, \Xi^{*} \& \Omega^{*}
$$

we use KN scattering data with statistics generated according to expected K-long Facility (KLF) data for 100 days to show PWA sensitivity
to obtain results close to the best fit

Strange Meson Spectroscopy
Possible channels with proton and deuterium target and corresponding CG coefficient.

$$
\begin{aligned}
& K_{L} p \rightarrow K^{ \pm} \pi^{\mp} p=\left\langle K_{L} \pi^{0} \mid K^{ \pm} \pi^{\mp}\right\rangle= \pm \frac{1}{3}\left(T^{\frac{1}{2}}-T^{\frac{3}{2}}\right), \\
& K_{L} p \rightarrow K_{L} \pi^{0} p=\left\langle K_{L} \pi^{0} \mid K_{L} \pi^{0}\right\rangle=\frac{1}{3}\left(T^{\frac{1}{2}}+2 T^{\frac{3}{2}}\right), \\
& K_{L} p \rightarrow K_{(L, S)} \pi^{+} n=\left\langle K_{L} \pi^{+} \mid K_{L} \pi^{+}\right\rangle=\frac{1}{3}\left(T^{\frac{1}{2}}+2 T^{\frac{3}{2}}\right), \\
& K_{L} p \rightarrow K^{+} \pi^{0} n=\left\langle K_{L} \pi^{+} \mid K^{+} \pi^{0}\right\rangle=-\frac{1}{3}\left(T^{\frac{1}{2}}-T^{\frac{3}{2}}\right), \\
& K_{L} p \rightarrow K^{-} \pi^{0} \Delta^{++}=\left\langle K_{L} \pi^{-} \mid K^{-} \pi^{0}\right\rangle=\frac{1}{3}\left(T^{\frac{1}{2}}-T^{\frac{3}{2}}\right), \\
& K_{L} n \rightarrow K^{ \pm} \pi^{\mp} n=\left\langle K_{L} \pi^{0} \mid K^{ \pm} \pi^{\mp}\right\rangle= \pm \frac{1}{3}\left(T^{\frac{1}{2}}-T^{\frac{3}{2}}\right), \\
& K_{L} p \rightarrow K_{(L, S)} \pi^{-} \Delta^{++}=\left\langle K_{L} \pi^{-} \mid K_{L} \pi^{-}\right\rangle=\frac{1}{3}\left(T^{\frac{1}{2}}+2 T^{\frac{3}{2}}\right), \\
& K_{L} n \rightarrow K_{L} \pi^{0} n=\left\langle K_{L} \pi^{0} \mid K_{L} \pi^{0}\right\rangle=\frac{1}{3}\left(T^{\frac{1}{2}}+2 T^{\frac{3}{2}}\right), \\
& K_{L} n \rightarrow K_{(L, S)} \pi^{ \pm} \Delta^{\mp}=\left\langle K_{L} \pi^{ \pm} \mid K_{L} \pi^{ \pm}\right\rangle=\frac{1}{3}\left(T^{\frac{1}{2}}+2 T^{\frac{3}{2}}\right), \\
& K_{L} n \rightarrow K^{ \pm} \pi^{0} \Delta^{\mp}=\left\langle K_{L} \pi^{ \pm} \mid K^{ \pm} \pi^{0}\right\rangle= \pm \frac{1}{3}\left(T^{\frac{1}{2}}-T^{\frac{3}{2}}\right),
\end{aligned}
$$

Strange Meson Spectroscopy

$K \pi \quad$ Scattering

$\frac{1}{3}\left(T^{1 / 2}-T^{3 / 2}\right)$

$$
\frac{1}{3}\left(T^{1 / 2}-T^{3 / 2}\right) \quad \frac{1}{3}\left(T^{1 / 2}+T^{3 / 2}\right)
$$

Proposed Measurements

SLAC
Belle
$\tau \rightarrow K \pi \nu_{\tau}$
$K^{-} \pi^{+} \rightarrow K^{-} \pi^{+}$

$\mathbf{M}(\mathrm{K} \pi)(\mathrm{GeK})$

KLF
$K_{L} \pi^{0} \rightarrow K^{+} \pi^{-}$

SLAC Lower limit

KLF 100 Days

Figure 11: Left: Cross section of $K^{-} p \rightarrow K^{+} \pi^{-} n$ as a function of the invariant mass from LASS results [27]. The blue line is the fit to the cross section using composite model containing two RBWs, spin-1 and spin-2, and S-wave LASS parameterization. Right: Expected distribution of the $K^{+} \pi^{-}$invariant mass below 1.6 GeV from KLF after 100 days of running. The dark blue function represents the $K^{+} \pi^{-} P$-wave, light brown the S-wave and green the D-wave. The dashed line represents the threshold of $K \pi$ invariant mass in LASS results [27].

Scalar Meson Nonet

Four states called κ
still need further confirmation(PDG)

Scalar Mesons

Vector Mesons

Figure 6. A cartoon representation of the masses of a $\bar{q} \bar{q} q q$ nonet compared with a $\bar{q} q$ nonet.

Very different mass hierarchy
 Possibly suggesting 4q tetraquark structure of scalar mesons?

Invariant mass resolution $\Delta m / m$ (\%)

Below 1\% in all cases

Projected Measurements

$$
I=3 / 2+1 / 2 \quad S \text {-wave }
$$

SLAC Data

$K^{ \pm} p \rightarrow K^{ \pm} \pi^{+} n$ $K^{ \pm} p \rightarrow K^{ \pm} \pi^{-} \Delta^{++}$
Estabrooks(1978)
$K^{-} p \rightarrow K^{-} \pi^{+} n$
Aston(1988)

$$
I=3 / 2 \quad S \text {-wave }
$$

From Pelaez and Rodas paper: PRD93(2016)

100 days KLF

$$
K_{L} p \rightarrow K^{(-, 0)} \pi^{(0,-)} \Delta^{++}
$$

$t^{\prime}=\mathbf{t}^{-t_{\text {min }}}$

Phase-shift

For L=0, 1
$A^{I}\left(\cos \theta_{G J}, \phi_{G J}\right)=\frac{\sqrt{4 \pi}}{q_{i}} \sum_{l, m} a_{l}^{I}(2 l+1) Y_{l}^{m}\left(\cos \theta_{G J}, \phi_{G J}\right)$
In the elastic region
$a_{L}^{I}=a_{L}^{I=1 / 2}+\frac{1}{2} a_{L}^{I=3 / 2}$
$a_{L}^{I}=\sqrt{(2 L+1)} \epsilon^{I} \sin \delta_{L}^{I} e^{\delta_{L}^{I}}$
Results include statistical uncertainty only.

Kappa Mass and Width

S wave phase shift, I=1/2 and
I = 3/2 with statistical and systematic uncertainities.

Roy-Steiner dispersion approach
J.R. Pelaez and et.al. Phys. Rev. D 93, 074025
$\sqrt{s_{\kappa}} \equiv M-i \Gamma / 2=648 \pm 4-i 280 \pm 8 \mathrm{MeV}$

Summary of $K \pi$ Scattering

-The KLF will have a significant impact on our knowledge on $K \pi$ scattering amplitudes
-It will improve on still conflictive determination of heavy K*'s parameters
-lt will help to settle the tension between phenomenological determinations of scattering lengths from data versus ChPT and LQCD
-Finally, and very importantly, it will reduce the uncertainty in the mass determination of $K^{*}(700)$ and by by more than a factor of two and by factor of five the uncertainty on its width
-It will further clarify debates of its existence, and therefore a long standing problem of the existence of the scalar meson nonet

Formation of Visible Matter during the Freeze-Out of the Universe after the Big Bang

KLF

The concept for the above figure originated in a 1986 paper by Michael Turner.

What else?

Pentaquarks

D. Diakonov, V. Petrov and M. V. Polyakov, Z. Phys. A 359, 305 (1997).

Is everything feasible from hardware point of view?

Next few slides will answer this question.

Reminder:

Hall-D beamline and GlueX Setup

https://arxiv.org/pdf/2008.08215.pdf

Compact Photon Source

Conceptual design is completed for Halls A\&C

The details of the CPS are designed by the CPS Collaboration

Meets RadCon Radiation Requirements

Paper published in NIM, A957(2020)

Be Target Assembly: Conceptual Design

-Meets RadCon Radiation Requirements
-Conceptual Design Endorsed by Hall-D Engineering Staff

arXiv: 2002.04442

Flux Monitor

17

$\mathbf{L H}_{2} / \mathbf{L D}_{2}$ Cryogenic Target for Neutral Kaon Beam at Hall D

The GlueX liquid hydrogen target.

Longer and ticker target is needed to enhance production rate
Conceptual design has been endorsed by the JLAB target group

Timeline of Design, Construction and Installation

Scheduling Outlook

Activity, experiment running	2021 sched	$\begin{aligned} & 2022 \\ & \text { uled } \end{aligned}$	2023	2024	2025	2026	2027	2028	2029	2030
Run PRIMEX- η	\square	\square								
Run SRC	\square									
Installation CPP										
Run CPP-NPP		[
Run GlueX-II										
Installation FCAL2										
Run GlueX-II+JEF										
Installation KLF (K_{L} beam)										
Commissioning, Run KLF										
Back to photon beam										
Installation of GDH										
Commissioning, Run GDH									\square	
- Assumed 25 weeks/year for Hall D running - Assumed timely budgeting for KLF and GDH				- Assumed timely construction of JEF,KLF,GDH						

E. Chudakov

GlueX Coll. Meeting, Oct. 2021

The Facility is Flexible and can be switched back to photon beam

KL2016

\qquad

[60 people from 10 countries, 30 talks] https://www.jlab.org/conferences/kl2016/ OC: M. Amaryan, E. Chudakov, C. Meyer, M. Pennington, J. Ritman, \& I. Strakovsky

YSTAR2016

[71 people from 11 countries, 27 talks] https://www.jlab.org/conferences/YSTAR2016/ OC: M. Amaryan, E. Chudakov, K. Rajagopal, C. Ratti, J. Ritman, \& I. Strakovsky

HIPS2017
[43 people from 4 countries, 19 talks] https://www.jlab.org/conferences/HIPS2017/ OC: T. Horn, C. Keppel, C. Munoz-Camacho, \& I. Strakovsky

PKI2018
[48 people from 9 countries, 27 talks] http://www.jlab.org/conferences/pki2018/ OC: M. Amaryan, U.-G. Meissner, C. Meyer, J. Ritman, \& I. Strakovsky
In total: 222 participants \& 103 talks

SUMMARY

-Proposed KL Facility has a unique capability to improve existing world database up to three orders of magnitude

> -In Hyperon spectrosocopy

PWA will allow to unravel and measure pole positions and widths of a few dozens of new excited
-In Strange Meson Spectroscopy
PWA will allow to measure excited K* states
To accomplish physics program 200 days running is approved

All components of KL Facility considered are feasible
-With total cost of the project below 2M
At the end we would like to invite everyone to join us.

Thank you!

