

Toward a K_L program at JLab Simon Taylor / JLab

May 17, 2016

Motivation for a K_L beam
 Existing measurements
 Hall D beam line and GlueX apparatus
 Preliminary simulation results

Motivation

 Constituent Quark Model successful framework for mapping out 3-quark baryon states

But there are many predicted but missing states...

 \bullet Hyperons (Λ's, Σ's, Ξ's, Ω's) are less well-understood than N^{*}'s, Δ's

What about hybrids (states with "valence glue") and multi-quark(>3) states?

Lattice QCD results

Thick borders: hybrid states

Edwards, Mathur, Richards and Wallace, Phys. Rev. D 87, 054506 (2013)

Simon Taylor / Toward a KL program at JLab

Jefferson Lab

Reactions of interest

Elastic and charge-exchange

Two-body with S=-1

Two-body with S=-2

$$\begin{array}{c} K_L^0 p \to K_S^0 p \\ K_L^0 p \to K^+ n \end{array}$$

$$\begin{split} K^0_L p &\to \pi^+ \Lambda \\ K^0_L p &\to \pi^+ \Sigma^0 \end{split}$$

$$\begin{array}{c} K^0_L p \to K^+ \Xi^0 \\ K^0_L p \to K^+ \Xi^{0*} \end{array}$$

po

Three-body with S=-2

$$K_L^0 p \to \pi^+ K^+ \Xi^-$$
$$K_L^0 p \to \pi^+ K^+ \Xi^{-*}$$

$$\begin{array}{l} K^0_L p \to K^+ K^+ \Omega^- \\ K^0_L p \to K^+ K^+ \Omega^{-*} \end{array}$$

Simon Taylor / Toward a K_L program at JLab

◆ To extract resonance parameters, need coupled-channel Partial Wave Analysis...

Simon Taylor / Toward a K^L program at JLab

Polarization observables

E physics

CEBAF and Hall D complex

9

Jefferson Lab

Photon beam source

- K, program requires high photon flux
 - Using existing radiator/tagger configuration with thicker radiator not feasible
 - Dose rates and activation would be unacceptable
 - Solution:

"Compact Gamma Source"

1()

Jefferson Lab

Beam line into Hall D

11

Simon Taylor / Toward a KL program at JLab

JSA

K_L beam

• 5 μ A e⁻ beam, 5% radiation length radiator \rightarrow ~7000 K₁/s on GlueX target

Simon Taylor / Toward a K_L program at JLab

Neutron background

🎯 🔁

Cryogenic target

C. Keith

14

• Polarized target feasible: butanol ($C_4H_{10}O$) frozen spin

The GlueX detector

🎯 👯

Particle identification

Energy loss in drift chambers, time-of-flight to outer detectors

TOF q⁺ dEdx [keV/cm 180 200 160 180 140 proton 0.8 160 120 140 15 0.6 120 100 proto 100 80 10 0.4 80 60 60 0.2 40 40 20 20 10 p (GeV/c) 0.5 1.5 2 2.5 3.5 p/M

dEdx vs p/M, proton cands.

(simulated $K_{L}p \rightarrow pK_{s}$ events)

Simon Taylor / Toward a KL program at JLab

Jefferson Lab

W resolution

Blue points: invariant mass of final state particles

Projected statistical uncertainties

19

More information

PHYSICS WITH NEUTRAL KAON BEAM AT JLAB

FEBRUARY 1-3, 2016 Jefferson Lab Newport News, Virginia

SCOPE

The Workshop is following Lo112-15-001 "Physics Opportunities with Secondary KL beam at JLab" and will be dedicated to the physics of hyperons produced by the kaon beam on unpolarized and polarized targets with GlueX set up in Hall D. The emphasis will be on the hyperon spectroscopy. Such studies could contribute to the existing scientific program on hadron spectroscopy at Jefferson Lab.

The Workshop will also aim at boosting the international collaboration, in particular between the US and EU research institutions and universities.

The Workshop would help to address the comments made by the PAC43, and to prepare the full proposal for the next PAC44.

ORGANIZING COMMITTEE

Moskov Amaryan, ODU, chair Eugene Chudakov, JLab Curtis Meyer, CMU Michael Pennington, JLab James Ritman, Ruhr-Uni-Bochum & IKP Jülich Igor Strakovsky, GWU

WWW.JLAB.ORG/CONFERENCES/KL2016

THE GEORGE WASHINGTON JULICH OLDOWINION Jefferson Lab

Talks are online: https://www.jlab.org/conferences/kl2016/program.html

Summary

- Constituent Quark Models and lattice calculations predict a large number of hyperon states yet to be seen experimentally
 K, beam can provide access to these states
- ${\scriptstyle \bullet}$ An experimental program using K $_{\rm L}$ beam is feasible in Hall-D using the GlueX detector

