Radiation Hardness Assurance. Military/Space grade. Contacts with manufacturers.

Example of Rad. Hardness specifications. Military Grade Chip RH3080.
 (https://www.analog.com/en/products/rh3080mk.html#product-overview)

```
TID =200 krad at 50 rad/c;

TID =100 krad at 10 mrad/c;

SED SEU SEL = 120 MeV/cm^2/mg;

DDD =1.E+12 n/cm^2.

More Examples of Rad. Hardness specifications.
```

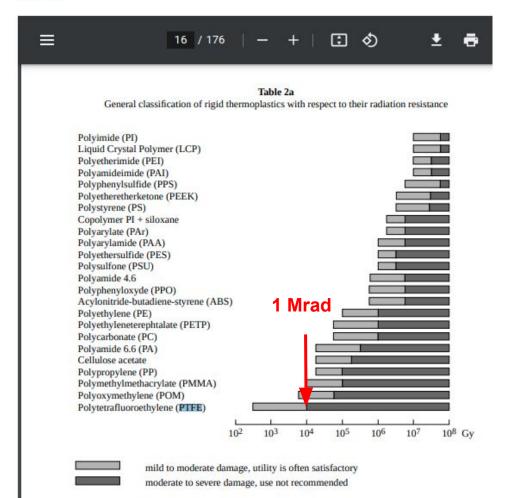
Data Device Corporation **TID** >=100 krad (memory and processors),

CMOS chips up to DDD=1.E+15 n/cm² and 50 krad.

TTL 5400 The low-power Schottky (LS) **TID=1000 krad**.

Emitter-coupled logic (ECL) **TID= 1.E+4 krad**.

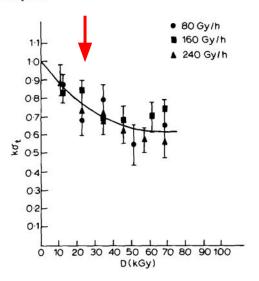
- For now E-mails are sent to:
- 1) ARI Corp (<u>www.aricorp.com</u>), Jozef Lebiedzik. Preamplifier PMT-5R for active collimator. <u>Responded:</u>"...All parts in the PMT-5R are standard commercial grade rating... most sensitive is **CMOS LMC662**...".
- 2) Rockwell Automation. (https://www.rockwellautomation.com). Allen Bradley 1769-L35E controller. Responded : no grade specifications (we should assume commercial/industrial)-> Next step:
- 3) Mail to Allen Bradley https://industrialautomationco.com/collections/allen-bradley-electronic-parts. sales@iac.us.com
- 4) HiCube Pro in relation to Turbo Pumping Station. <u>info@pfeiffer-vacuum.de</u> <u>www.pfeiffer-vacuum.</u>com/en
- Most likely all chips in Tagger Hall are of **commercial grade**. Therefore, for the electronic chip Lifetime estimates we may use:

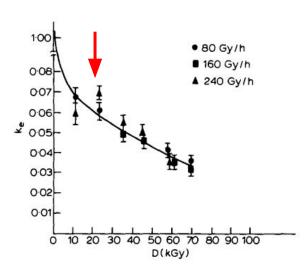

```
Chip TID = 5-10 krad Teflon TID =>1Mrad
Chip DDD = E+(11:15) n/cm^2 Teflon DDD =>E+13 n/cm^2 (14 MeV)
References in Technical Note.
```

Radiation Hardness of plastics. See Technical Note for references.

Material	Neutron /cm ²	TID /rad	TensStr	TensStr /psi	Elong /%	Tickness /in	Ref.
Teflon(PTFE), air	-	1.E+5	50-10	4800	80-50	0.06	24
Teflon, vacuum	-	1.E+6	80-50	4800	100-80	0.06	24
RT/duroid (PFTE)	-	1.E+6					22
porous PTFE	1.E+13	1.E+4					23
Teflon	3.E+14		50-10				15
Teflon		2.E+6	60-40	-	2-6	0.25×2	27
Nylon		1.E+7					23
Epoxy		1.E+8					23
Polyethylene		>2.E+7					23

ebook: 10.5170/CERN-1998-001


CC-BY-3.0


Tensile strength of Teflon (cPTFE 6.4×50.1 mm) vs TID in Air.

https://www.sciencedirect.com/science/article/pii/014139109290093K?via%3Dihub

M. I. Chipară

Ratio of "tensile strength" of irradiated and unirradiated samples of cPTFE vs TID/kGy.

Ratio of the "elongation at break" for irradiated to that of unirradiated PTFE vs TID/kGy.

- At 20.E+3 Gy= 2.E+6 rad Teflon sample Brakes at $\sim 80\%$ of nominal load, while elongates by $\sim 6\%$.
- At 100 rad/hr (of γ) Teflon LT = 2.E+4 hrs.

Tensile strength of Teflon (pPTFE 6.4×50.1 mm) vs TID in Air.

https://www.sciencedirect.com/science/article/pii/014139109290093K?via%3Dihub

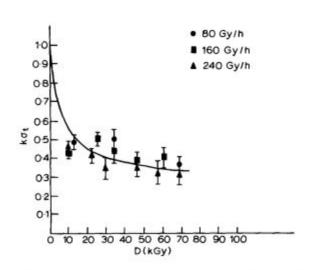


Fig. 3. The dependence of K_{α_i} on the doses, D, for pPTFE irradiated at various dose rates (80 Gy/h, 160 Gy/h, 240 Gy/h).

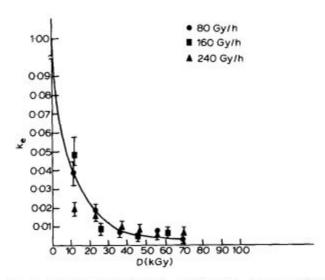


Fig. 6. The dependence of K_e on the dose, D, for pPTFE irradiated at various dose rates (80 Gy/h, 160 Gy/h, 240 Gy/h).

- At 20.E+3 Gy= 2.E+6 rad pure Teflon sample Brakes at $\sim 45\%$ of nominal load, while elongates by $\sim 2\%$.
- At 100 rad/hr (of γ) Teflon LT = 2.E+4 hrs = 2.3 years.