Software for KLF

Sean Dobbs Florida State U.

KLF IERR Aug. 29, 2024

KLF Software Overview

- KLF Software stack based on existing GlueX stack
 - Highly parallelized processing
 - Centralized production

•

- Standardized analysis ROOT trees
 - Will focus on KLF specific developments

Event Generators — KLGenerator

Generates menu of K_L and ninduced processes, primarily for hyperon spectroscopy analyses

- Assumes uniform population of events in KPT and cryotarget, derives K_L propagation time
- Assumes phase space population of final state particles
 - Focus on *s*-channel reactions
 - Efficiency determinations
 - Cross-feed backgrounds between channels

<reaction< td=""><td>on code></td><td></td></reaction<>	on code>	
(11	Klong p	––> K+ n
(12	Klong p	> Ks p
(13	Klong p	> K+ Xi
(14	Klong p	> pi+ Lambda
(15	Klong p	> pi0 Sigma+
(16	Klong p	> pi+ Sigma
(ln1	Klong n	> K- p
(ln2	Klong n	> Ks n
(ln3	Klong n	> K+ Xi-
(ln4	Klong n	> pi0 Lambda
(ln5	Klong n	> pi0 Sigma
(ln6	Klong n	> pi- Sigma+
(ln7	Klong n	> pi+ Sigma-
(ln8	Klong n	> Ks Xi
1	g p>	K+ Lambda
12	g p>	K+ Sigma
13	g p>	Ks Sigma+
1	n p>	K+ Lambda n
12	n p>	K+ Sigma n
13	n p>	Ks Sigma+ n
14	n p>	Ks Lambda p
15	n p>	Ks Sigma p
16	n p>	n n pi+

Event Generators — KPiGenerator

- Generates $K\pi$ events using model including *S*-, *P* and *D* waves
 - $K_L p \rightarrow K^+ \pi^- p$: Dass and Froggatt, NPB 151, 10 (1969) • $K_L p \rightarrow K^{*-} \Delta + +$:

Pelaez and Rodas, PRD 93, 076025 (2016)

• Different $K\pi$ final states recoiling against p, n, Δ^{++}

Event Generators — HDGeant4

- Recent progress in implementing KLF beamline in standard Hall D GEANT4 simulations (see talk of R. Jones)
- Simulates beam properties and effect of beam backgrounds on final state reconstructing
- Generating large sample of beam background interactions to "mix-in" with simulated events

Event Generators — K_L beam properties

FLUKA simulations provide energy spectrum of the beam at the cryotarget, beam particles are distributed evenly across the face of the target

GlueX Spectrometer

 Only modification of standard GlueX-II spectrometer configuration is a larger target cell

KLF cryotarget geometry in GEANT4

GlueX cryotarget r = 1.5 cmz = 30 cm

Nominal KLF target geometry implemented in GEANT4

KLF Reconstruction and Analysis

- Standard tracking and shower reconstruction algorithms are used
 - Analysis library applies loose PID selections and kinematic fit to selected reactions
 - Position and timing of primary vertex determines
 K_L momentum
 - Resolution is reactiondependent
 - Best performance for exclusive reactions with kinematic fit

K_L Beam Reconstruction

- K_L momentum determined from time-of-flight measurement from KPT to primary vertex
- Primary vertex resolution depends on final state kinematics

Example: $K_L p \rightarrow K_S p$

- Generated $K_L p \to K_S p, K_S \to \pi^+ \pi^-$ events with nominal K_L momentum distribution and phase space decay
- Reconstructed with standard analysis tools, vertex-only kinematic fit
- $K_S \rightarrow \pi^+ \pi^-$ decay cleanly reconstructed

Example: $K_L p \rightarrow K_S p$ – Primary Vertex

Primary vertex reconstructed inside cryotarget

S. Dobbs — KLF IERR — Aug. 29, 2024 — Software for KLF

Example: $K_L p \rightarrow K_S p$ – Mass Resolution

Mass resolution of reconstructed final states is < 35 MeV

Example: $K_L p \rightarrow K_S p - K_L$ reconstruction

• K_L reconstructed over a wide range of momenta

Example: $K_L p \rightarrow K_S p - K_L$ reconstruction

Resolution

• K_L reconstructed over a wide range of momenta

Summary

- KLF software based on well-tested GlueX software stack
- Nominal KLF geometry implemented in GEANT4
- Several event generators in use
 - KLGenerator 2-body, s-channel reactions
 - KPiGenerator $K\pi$ scattering
 - Beam backgrounds in GEANT4
- Standard reconstruction and analysis codes have been modified to produce ROOT trees for analysis of K_L -induced reactions
 - K_L beam reconstruction depends on final state reconstruction
 - particle well reconstructed
 - Additional examples in upcoming analysis talks

Backup slide

• text

S. Dobbs — KLF IERR — Aug. 29, 2024 — Software for KLF