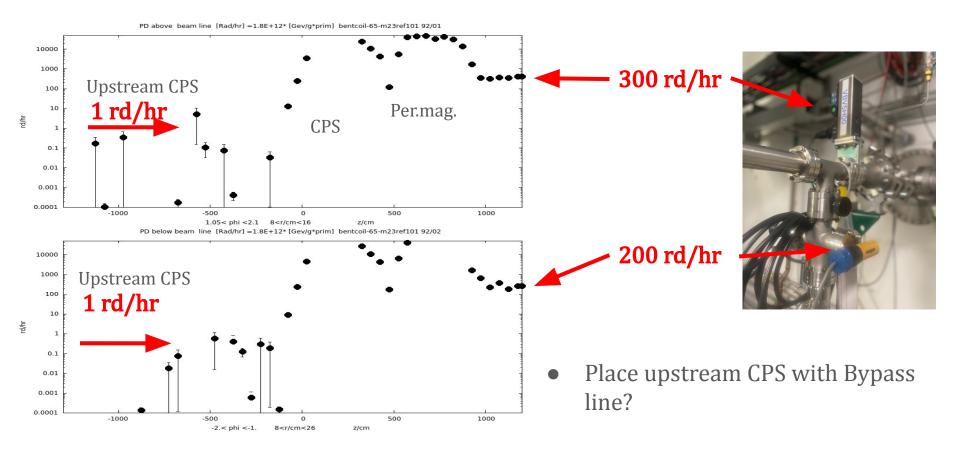
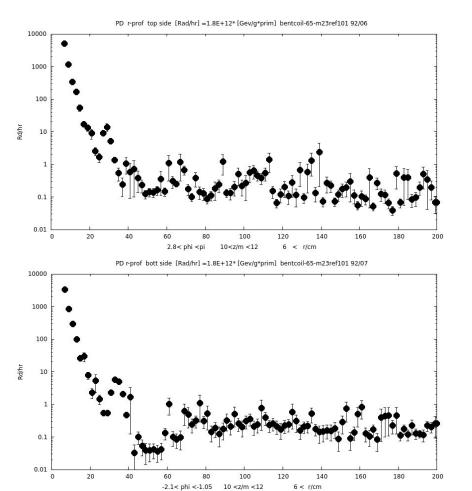

CPS beam line and VBV lifetime; Teflon as a benchmark.

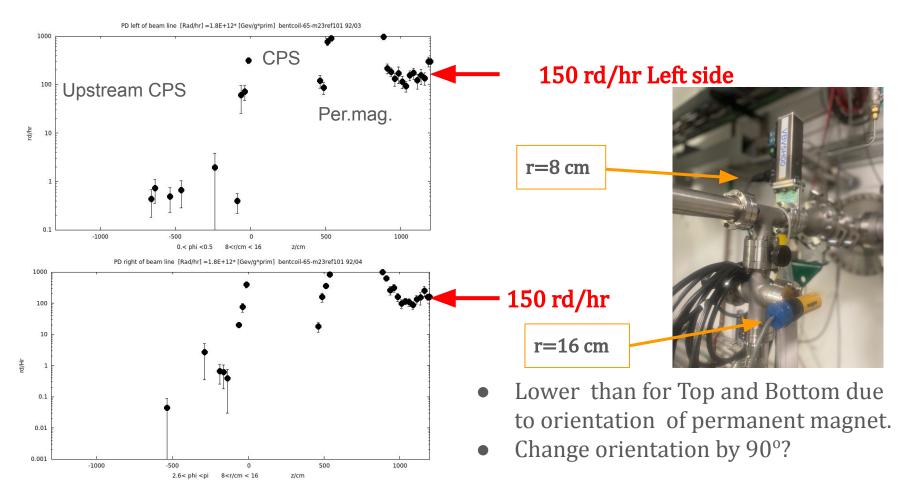
[baturin@hallal1 ABSTSTref9]\$ flair bentcoil-65-m23ref101.flair



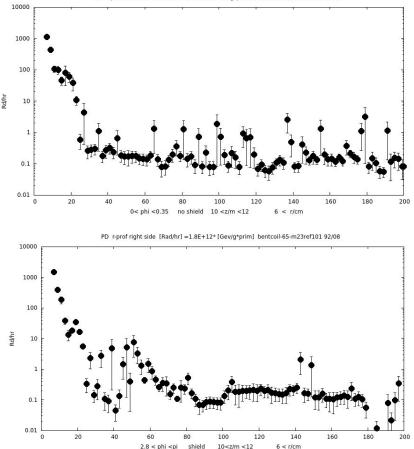
- Assume that critical part of vacuum remote control (VBV) is located at 8<r/cm<16
- What is PD in this area along the beam line? What is neutron flux to be respon.


Prompt Dose r.vs.z -profile above the beam line (top ½ semi sphere).

Prompt Dose z-profile on Top and Bottom of the beam line at 8<r/cm<16



Prompt Dose r-profile on Top and Bottom of the beam line. 10 < z/m < 12


- At r/cm = 8 PD= \sim 1000 rd/hr
- At r/cm= 14 PD=~100-200 rd/hr
- At r/cm= 20 PD= \sim 2 rd/hr
- At r/cm > 30 PD= \sim 10 rd/hr

PD z-profile Left and Right to the beam line at 8<r/cm<16

PD r-profile. Left and Right to the beam line. 10 < z/m < 12

PD r-profile left side [Rad/hr] =1.8E+12* [Gev/g*prim] bentcoil-65-m23ref101 92/09

- At r/cm = 8 **PD=~500 rd/hr**!
- At r/cm =14 PD=~50-100 rd/hr
- At r/cm = 30 PD = ~ 0.1 rd/hr !
- Left=right difference is due to the additional concrete shield at the right side
- Twice lower than for Top and Bottom profiles.

Tensile strength of Teflon (pPTFE 6.4×50.1 mm) vs TID in Air.

https://www.sciencedirect.com/science/article/pii/014139109290093K?via%3Dihub

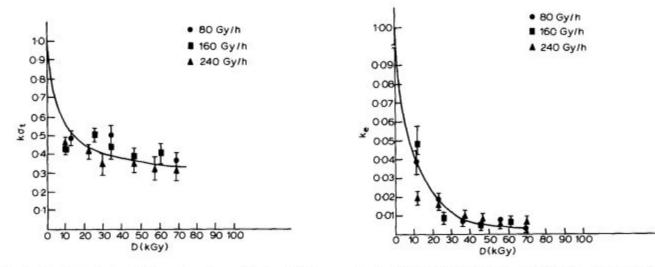
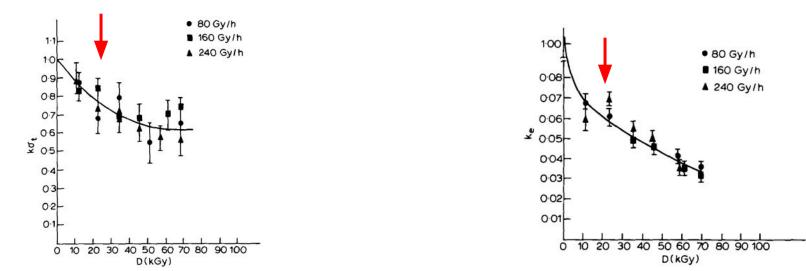


Fig. 3. The dependence of K_{a_r} on the doses, D, for pPTFE irradiated at various dose rates (80 Gy/h, 160 Gy/h, 240 Gy/h).

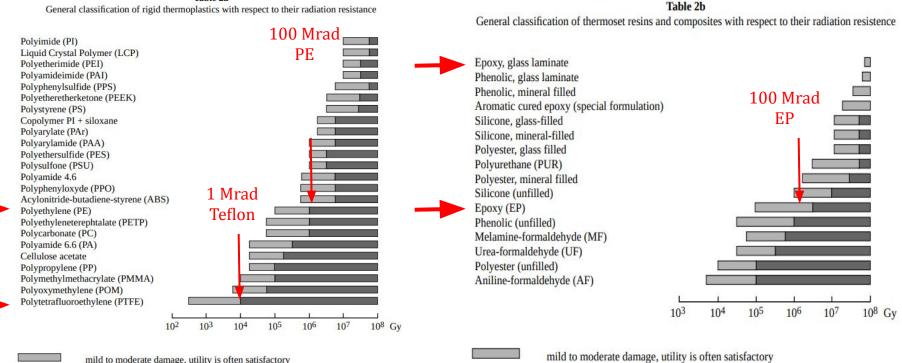

Fig. 6. The dependence of K_e on the dose, D, for pPTFE irradiated at various dose rates (80 Gy/h, 160 Gy/h, 240 Gy/h).

- At 20.E+3 Gy= **2 Mrad** (up to **10 Mrad**?) pure Teflon sample brakes at $\sim 45\%$ of nominal load, elongates by $\sim 2\%$.
- At 100 rad/hr (of γ) Teflon LT = 2.E+4 hrs = 2.3 years. May be 3 times longer 7 years!

Tensile strength of Teflon (cPTFE 6.4×50.1 mm) vs TID in Air.

https://www.sciencedirect.com/science/article/pii/014139109290093K?via%3Dihub https://www.osti.gov/servlets/purl/1671997

M. I. Chipară


Ratio of "tensile strength" of irradiated and unirradiated samples of cPTFE (Carbon filled)) vs TID/kGy.

Ratio of the "elongation at break" for irradiated to that of unirradiated cPTFE vs TID/kGy.

- At 20.E+3 Gy= **2** Mrad Teflon+C sample Brakes at ~ 80% of nominal load, while elongates by ~6%.
- At 100 rad/hr (of γ) Teflon LT = 2.E+4 hrs = 2.3 years.

Compilation of Radiation Damage Test Data

https://cds.cern.ch/record/357576/files/CERN-98-01.pdf

moderate to severe damage, use not recommended

Table 2a

mild to moderate damage, utility is often satisfactory

moderate to severe damage, use not recommended

Irradiation performance of PolyTetraFluoroEthylene (PTFE, Teflon, $0.6^2 \times 10$ cm³) in a mixed fast neutron and gamma radiation field.

Otto K. Harling *, Gordon E. Kohse, Kent J. Riley

MIT Nuclear Reactor Laboratory, 138 Albany Street, Cambridge, MA 02139, USA Received 17 **December 2001**; accepted 1 April 2002

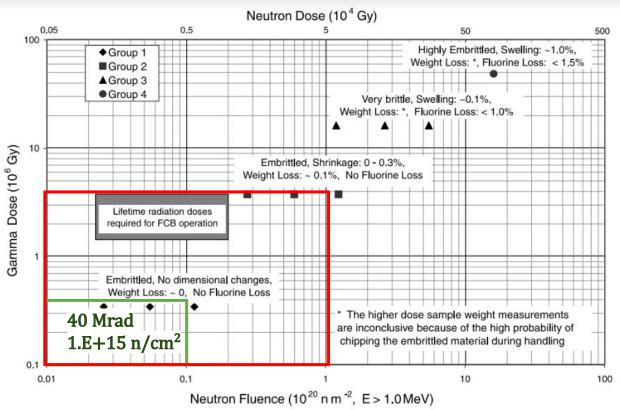


Fig. 1. Summary of the PTFE irradiation tests.

Teflon tests were done in Air atmosphere!

- Critical Prompt Dose ~10-40 Mrad
- Critical neutron flux ~1.E+15 n/cm^

HEATING ELEMENT

BASE MATERIAL: Teflon

TYPE: -

SUPPLIER: -

IDENTIFICATION: 291-1980

DESCRIPTION OF MATERIAL:

Flexible heating element of total width 68 mm consisting of a carbonized tissue (woven fibres) of width 38 mm embedded in an insulating coating of Teflon

APPLICATION AT CERN:

Heating element for vacuum chamber bakeout at the Intersecting Storage Rings and at the Super Proton Synchrotron LSS4 and LSS5 $\,$

IRRADIATION CONDITIONS:

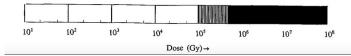
Type: Reactor ASTRA, switched-off reactor position 35 in air, dose rate 10 Gy/s Doses: 1×10^5 , 1×10^6 Gy

METHODS OF TESTING:

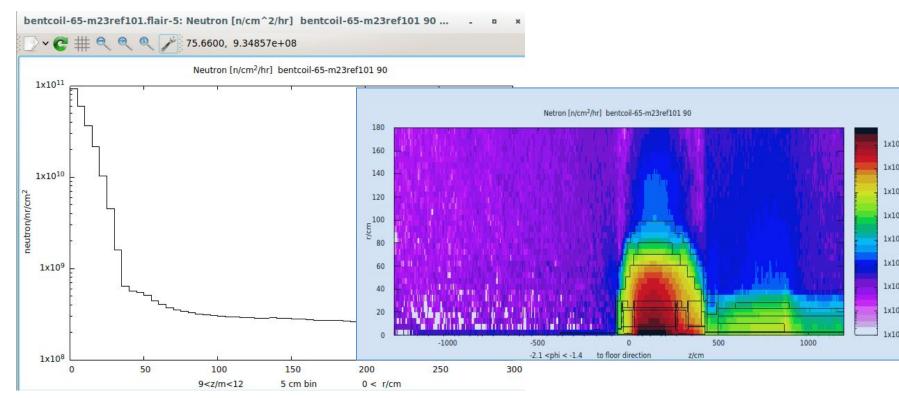
CERN compilation of radiation damage data (1980)

Teflon in a heating element. Test in Air!

• Teflon **<u>does not break</u>** at 1.E+5 Gy = **10 Mrad** !


RESULTS:

Teflon matrix was severely damaged at 1 \times 10⁶ Gy. After some handling to test flexibility, the electrical resistance was greater than 2 \times 10⁶ Ω . At the lower dose of 1 \times 10⁶ Gy, however, the Teflon did not break, and the electrical resistance was 6.6 \times 10³ Ω at a length of 15 cm.


Remarks:

REFERENCES:

APPRECIATION: *** USE IN HIGH LEVEL RADIATION AREAS NOT RECOMMENDED *** See Appendix 7

Teflon LT and Neutron flux r-profile near exit form Tagger Hall (9<z/m <12)

- At 10<r/cm<15 neutron flux ~**0.4 E+11 n/cm²/hr;** maximum **PD=500 rad/hr**
- Neutron-induces Teflon LT >20000 hrs= ~ 2 year (critical flux =1.E+15 n/cm²)
- Photon induced Teflon LT >10 Mrad/500rad/hr = 20000 hrs=~2 years (critical PD =10 Mrad)

ELECTRONICS COMPONENTS

Designation

metal film

mica

MKL

polyester

tantalum

rectifier, Si

Zener, Si

tunnel. Ge

Transistor: NPN, Si

Integrated: TTL gate

polycarbonate

electrolytic Al

hot carrier. Si

general-purpose, Si

general-purpose, Si

PNP, Si, rad. resist. PNP, Si, rad, resist.

FET, Si, N-channel

FET, Si, P-channel

TTL flip-flop

TTL counter

TTL one-shot

amplifier, rad. res.

amplifier, rad. res.

op. ampli. rad. res.

op. ampli. rad. res.

comparator

op. ampli.

op. ampli. op. ampli. FET input

Discrete: op. ampli. DAC, 10 bits

Rectifier: selenium

op. ampli. FET input

op. ampli. gen. purpose

TTL gate TTL flip-flop

MOSFET, P-channel

MOSFET, N-channel

wire wound potmeter "cermet" Type

1kQ.5%

1 kΩ, 1%

100 Ω. 5%

1 kΩ, 78P 20 nF. 30 V

22 pF, 300 V

15 nF, 125 V

15 nF, 250 V

200 µF, 10 V

15 µF, 20 V 10D6

1N914

BAY72 HP2900

ZF6,8

1N3717

MM4261H

2N3819

2N3820

3N165

BSV81

SN7400N

SN7473N

SN7493N

SN74121N MC3000P

MC3055P

RSN55900

RSN55910

RSN52709

µA744

µA740

T1303

T1319

T1420

T1024

T4022

MC1741

SN72710

2N918 2N5332

0.22 µF, 100 V

BASE MATERIAL: Various

TYPE: See table below

SUPPLIER: Various

IDENTIFICATION: 133-1974

Resistor: carbon

Capacitor: ceramic

Diode:

CERN compilation of radiation damage data (1980)

Stable operation of electronic components

Integrated

TTL logics, amplifiers, General purp. Si $1.E+13 \text{ n/cm}^2$. (200/2000/20000 hrs)

Diodes

1015

General purpose Si Ht Carrier, Zener

Resistors

Carbon and wire Metal Film

Capacitor

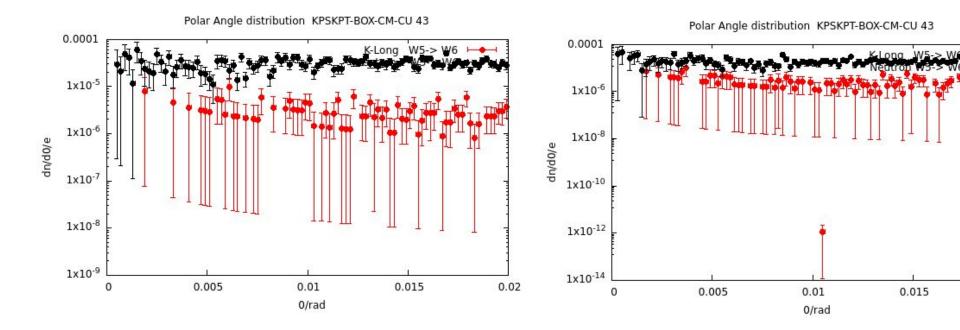
Ceramic Polyester Mica, MKL, Tantalum 1.E+13 n/cm². (200/2000/20000 hrs) 1.E+14 n/cm². (200/20000/20000 hrs)

1.E+14 n/cm². (2000/20000 hrs) unlimited

1.E+13 n/cm² (200/2000/20000 hrs) 1.E+14 n/cm² (2000/20000 hrs) unlimited

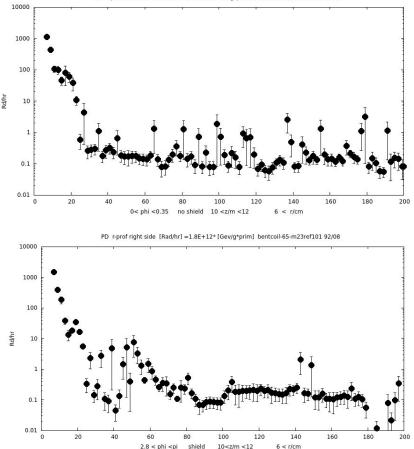
All brakes typically at 10 times higher neutron flux. AT 10 < r/cm < 15 neutron flux $\sim 0.5 E + 11 n/cm^2/hr$. At 25<r/cm<30 -//- ~0.5 E+10 n/cm²/hr At 50 < r/cm -//- ~0.5 E+09 n/cm²/hr

B250C75 *) Conversion factor 10¹⁷ n/m² (E > 1 MeV) ≈ 410 Gy in organic (CH₂) materials or 12 Gy in silicon.


stable	damaged	broken

Exposure in $n/m^2 (E > 1 MeV)^*$)

1016


CONCLUSION Teflon at r = 8 cm; worst case scenario.

- **VBV cable** at the exit from Tagger Hall (10 < z/m < 12) is exposed to ~ 500 rad/hr (at r = 8 cm).
- From **CERN** database, and Slide-8, we read for the **Teflon** TID = **2 Mrad** (up to 40 Mrad). Therefore,
- Under photons Teflon LT = 0.5 years (up to 10) of continuous operation (\sim 170 days = 4.E+3 hrs; SHV conn.).
- Under **neutrons** Teflon **LT** = 2 **years**
- **Epoxy** and **Polyethylene LT = 50 years** (20000 days =~4.E+5 hrs, PCBs and cable insulation).
- At the **<u>upstream</u>** side of the beam line all **LTs are** ~ **100 times longer**.
- Is it possible to **avoid** placing **vacuum equipment downstream** the CPS using bypass line?
- Engineering solution to avoid vibration and mechanical load on SHV connectors.
- From exponential r-profiles => at r =~ 15 cm LTs are ~ 10 times longer. at r =~ 30 cm ~ ~100 times longer

PD r-profile. Left and Right to the beam line. 10 < z/m < 12

PD r-profile left side [Rad/hr] =1.8E+12* [Gev/g*prim] bentcoil-65-m23ref101 92/09

- At r/cm = 8 PD= \sim 500 rd/hr!
- At r/cm =14 PD=~50-100 rd/hr
- At r/cm = 30 PD = ~ 0.1 rd/hr !
- Left=right difference is due to the additional concrete shield at the right side
- At r=14 twice lower than for Top and Bottom profiles.