The K⁰_L Facility at

Moskov Amaryan

The GlueX Collaboration Meeting, Feb. 16, 2017

A Letter of Intent to Jefferson Lab PAC-43.

Physics Opportunities with a Secondary K_L^0 Beam at JLab.

Moskov J. Amaryan (spokesperson),^{1,*} Yakov I. Azimov,² William J. Briscoe,³ Eugene Chudakov,⁴ Pavel Degtyarenko,⁴ Gail Dodge,¹ Michael Döring,³ Helmut Haberzettl,³ Charles E. Hyde,¹ Benjamin C. Jackson,⁵ Christopher D. Keith,⁴ Ilya Larin,¹ Dave J. Mack,⁴ D. Mark Manley,⁶ Kanzo Nakayama,⁵ Yongseok Oh,⁷ Emilie Passemar,⁸ Diane Schott,³ Alexander Somov,⁴ Igor Strakovsky,³ and Ronald Workman³ ¹Old Dominion University, Norfolk, VA 23529

²Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia ³The George Washington University, Washington, DC 20052
⁴Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ⁵The University of Georgia, Athens, GA 30602 ⁶Kent State University, Kent, OH 44242
⁷Kyungpook National University, Daegu 702-701, Korea ⁸Indiana University, Bloomington, IN 47405 (Dated: May 15, 2015)

- Introduction
- Baryon Multiplets and Missing states
- Experimental Arrangement
- K⁰_L Beam at GlueX
- Expected rates
- What can be studied and why it is interesting
- Summary

Constituent Quark Model

But there are many more states predicted, where are they? Where are hybrids, glueballs, multiquark states ? Did we already observe some of them?

Lattice QCD calculations

Lattice QCD calculations

Thick borders: Hybrid states

Low Lying states

Edwards, Mathur, Richards and Wallace Phys. Rev. D 87, 054506 (2013)

Status of $\ \Omega^{-*}$

- Three light quarks can be arranged in 6 baryonic families, N*, Δ^* , Λ^* , Σ^* , Ξ^* , & Ω^* .
- Number of members in a family that can exist is not arbitrary.
- If **SU(3)**_F symmetry of **QCD** is controlling, then:

- Number of experimentally identified resonances of each baryon family in summary tables is 17 N*, 24 Δ *, 14 Λ *, 12 Σ *, 7 Ξ *, & 2 Ω *.
- **Constituent Quark** models, for instance, predict existence of no less than 64 N*, 22 Δ * states with mass < 3 GeV.
- Seriousness of "missing-states" problem is obvious from these numbers.

• To complete SU(3)_F multiplets, one needs no less than 17 Λ^* , 41 Σ^* , 41 Ξ^* , & 24 Ω^* .

How to make a kaon beam? Thomas Jefferson National Accelerate about Thomas Jefferson National Accelerate About Thomas Jefferson National Accelerate About The About Th

Aerial View

Hall D Beamline Current setup

Hall D Tagger Area

- Design beam current limits: 5 µA (60 kW) max
- Design radiator thickness: ~0.0005 Radiation Lengths max
- Challenge: Increase radiator thickness to 0.05-0.10 R.L.?!

Compact Photon Source Concept

- Strong magnet after radiator deflects exiting electrons
- Long-bore collimator lets photon beam through
- Electron beam dump placed next to the collimator
- Water-cooled Copper core for better heat dissipation
- Hermetic shielding all around and close to the source
- High Z and high density material for bulk shielding
- Borated Poly outer layer for slowing, thermalizing, and absorbing fast neutrons still exiting the bulk shielding
- No need in tagging photons, so the design could be compact, as opposed to the Tagger Magnet concept

CPS: PR12-15-003 Proposal at JLab

Application example: CPS concept for new experiment in Hall A

MC simulation and direct calculations show acceptable background rates on SBS and NPS.

B. Wojtsekhowski

PAC43, July 7, 2015

CPS at the Hall D Tagger Area

CPS, horizontal plane (1)

Dose Rate Evaluation and Comparison

- The dose rates in the Tagger vault for the CPS setup with 10% R.L. radiator are close to Standard XD ops
- The radiation spectral composition is different; most of the contribution in the CPS setup is from higher energy neutrons

Dose Rate Evaluation and Comparison

- The plots show comparison of dose rate estimates in the Tagger Area in two conditions: (1) nominal Hall
 D operation with the standard amorphous radiator at 0.0005 R.L., - with (2) radiator at 0.1 R.L., used as part of the Compact Photon Source setup.
- The comparison indicates that at equal beam currents, gamma radiation dose rates are much smaller for the CPS run (~order of magnitude), and neutron dose rates in the area are comparable.
- Design and shielding optimization may improve the comparison further in favor of the CPS solution

More discussions on CPS at the Workshop

"New Opportunities with High-Intensity Photon Sources" February 6-7, 2017 at CUA

https://www.jlab.org/conferences/HIPS2017/

K⁰_L beam (continued)

- -Electron beam with $I_e = 5\mu A$
- -Delivered with 64 ns bunch spacing avoids overlap in the range of P=0.3-10.0 GeV/c
- -Momentum measured with TOF
- -K⁰_L flux mesured with pair spectrometer

-Side remark: Physics case with polarized targets is under study and feasible

Rate of neutrons and K⁰_L on GlueX target

FIG. 2. Comparison of the neutron and K_2^0 fluxes at the hydrogen bubble chamber for 2° production with 16-GeV electrons.

• With a proton beam ratio $n/K_L = 10^3 - 10^4$

• ProjectX (Fermi Lab) arXiv:1306.5009

Table III-2: Comparison of the K_L production yield. The BNL AGS kaon and neutron yields are taken from RSVP reviews in 2004 and 2005. The *Project X* yields are for a thick target, fully simulated with LAQGSM/MARS15 into the KOPIO beam solid angle and momentum acceptance.

		Beam energy	Target (λ_I)	$p(K) (\mathrm{MeV}/c)$	K_L/s into 500 μ sr	$K_L : n (E_n > 10 \text{ MeV})$					
	BNL AGS	24 GeV	1.1 Pt	300-1200	60×10^{6}	$\sim 1:1000$					
	Project X	3 GeV	1.0 C	300-1200	$450 imes 10^6$	$\sim 1:2700$					
KL beam can be used to study rare decays Iowever it will be impossible to use it for hyperon spectroscopy because of momentum range and n/K Ratio											

K⁰_L beam

- Electron beam $E_e = 12 GeV; I_e = 5\mu A$
- Radiator (rad. length) 10%L = 40 cm Be target (R=3cm) R = 3cm LH2 target(L=30cm) 16m **Distance Be-LH2** $\sim 10^4$ • K_L Rate/sec

Neutron Background

Neutron calculations for the KLF Project using MCMP6

Conclusion: Neutron Flux in Hall D is tolerable

Other Facilities

Talk by Onishi at KL2016

W Resolution

Very Limited World Data with KL beam(Mainly low stat. bubble chamber data. Compilation by I. Strakovsky)blue points: $d\sigma/d\Omega$ red points: Polarization

we are not aware of any data on Neutron target

Status of Ξ^*

Very poorly measured at AGS (BNL) 32 years ago

•

C.M. Jenkins et al., Phys. Rev. Lett. 51, 951 (1983)

Cross Sections

J.K. Hassal et al., NPB 189 (1981)

Expected rates

Production	J-PARC*	Jlab (this proposal)				
flux/s	$3 \times 10^4 K^-$	$10^{4} K_{L}^{0}$				
$\Xi^*/month$	3×10^5	2×10^5				
$\Omega^{-*}/month$	600	4000				

H.~Takahashi, NP A 914, 553 (2013) M.~Naruki and K.~Shirotori, LOI-2014-JPARC

*

What can be learned with a K^{0}_{L} beam ?

List of reactions:

Elastic and charge-exchange

Two-body with S=-I

Three-body with S=-2

Three-body with S=-3

$$\begin{split} K^0_L p &\to K^0_S p \\ K^0_L p &\to K^+ n \end{split}$$

$$K_L^0 p \to \pi^+ \Lambda$$
$$K_L^0 p \to \pi^+ \Sigma^0$$

$$\begin{split} K^0_L p &\to K^+ \Xi^0 \\ K^0_L p &\to K^+ \Xi^{0*} \end{split}$$

$$K_L^0 p \to \pi^+ K^+ \Xi^-$$
$$K_L^0 p \to \pi^+ K^+ \Xi^{-*}$$

$$\begin{split} K^0_L p &\to K^+ K^+ \Omega^- \\ K^0_L p &\to K^+ K^+ \Omega^{-*} \end{split}$$

32

Expected Cross Sections vs Bubble Chamber Data

• GlueX measurements will span $\cos\theta$ from -0.95 to 0.95 in c.m. above W = 1490 MeV.

More details in KL2016 Workshop Proceedings

arXiv: 1604.02141

World Data on Ξ

Evolution of an Early Universe at Freeze-out

Chemical potential

YSTAR2016 Proceedings arXiv: 1701.07346

YSTAR2016 Proceed 1701.07346

Partial pressure P/T⁴

YSTAR2016 Proceedings arXiv:1701.07346

- 1.1 Why $K\pi$ scattering is important?
- Hadron spectroscopy: determine resonances and their nature
- P-wave: K*(892), K*(1410), K*(1680), ...
- S-wave: "κ(~800)", …
- Exotics,...
- $\pi\pi$ and $K\pi$ building blocks for hadronic physics:
- Test of Chiral Dynamics
- Extraction of fundamental parameters of the Standard Model
- Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?

Very important when Final State Interactions at play!

Emilie Passemar, KL2016 Workshop

3.2 K*(892) mass and width

K*(892) MASS

PDG'15

CHA	RGED ONL	Y, HADI	ROPRODUCE	D									
			DOCUMENT IL)	TECN	CHG	COMMENT	CHARGED UNL	r, PROL	DUCED IN $ au$ LE	PION I	JECAY	2
891.0	0±0.20 UUR	AVERAGE						VALUE (MeV)	EVTS	DOCUMENT	- ID	TECN	COMMENT
892.0 888	± 0.5 +3	5040	NAPIER	84B 84	HBC SPEC	— +	8.25 K $p \rightarrow K^{0} \pi^{-} p$ 200 $\pi^{-} p \rightarrow 2K^{0} X$	895.47±0.20±0.74	53k	⁶ EPIFANO	V 07	BELL	$\tau^- \rightarrow K^0_S \pi^- \nu_\tau$
891	\pm 1		NAPIER	84	SPEC	_	$200 \pi^{-} p \rightarrow 2K_{0}^{0} X$	• • • We do not us	e the follo	wing data for ave	rages, fits,	limits, e	etc. • • •
891.7	± 2.1	3700	BARTH	83	HBC	+	70 $K^+ p \rightarrow K^0 \pi^+ X$	8020 +05			10	R\/IIF	$\tau^- \rightarrow \kappa^0 \pi^- \nu$
891	± 1	4100	TOAFF	81	HBC	_	6.5 $K^- p \rightarrow \overline{K}^0 \pi^- p$	052.0 ±0.5		80	10		r r r r
892.8	± 1.6		AJINENKO	80	HBC	+	32 $K^+ p \rightarrow K^0 \pi^+ X$	892.0 ± 0.9		°,9 BOITO	09	RVUE	$\tau^- \rightarrow K^0_S \pi^- \nu_\tau$
890.7	± 0.9	1800	AGUILAR	78 B	HBC	±	0.76 $\overline{p}p \rightarrow K^{\mp}K^{0}_{S}\pi^{\pm}$	895.3 ±0.2		^{8,10} JAMIN	08	RVUE	$\tau^- \rightarrow K^0_S \pi^- \nu_\tau$
886.6	± 2.4	1225	BALAND	78	HBC	\pm	$12 \overline{p} p \rightarrow (K \pi)^{\pm} X$	806 / +0.0	11070		JI 02		$\tau^- \rightarrow \kappa^- \pi^0 \mu$
891.7	± 0.6	6706	COOPER	78	HBC	±	0.76 $\overline{p}p \rightarrow (K\pi)^{\pm} X$	090.4 ± 0.9	11970		VI 02		$\gamma \rightarrow \kappa \pi \nu \tau$
891.9	± 0.7	9000	¹ PALER	75	HBC	_	14.3 $K^- p \rightarrow (K\pi)^-$	895 ± 2		¹² BARATE	99R	ALEP	$\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$
892.2	± 1.5	4404	AGUILAR	71B	HBC	_	$3.9,4.6 \ K^{-} p \rightarrow (K\pi)^{-} p$						
891	± 2	1000	CRENNELL	69 D	DBC	_	$3.9 \ K^- N \rightarrow \ K^0 \pi^- X$	NEUTRAL ONLY	1				
890	± 3.0	720	BARLOW	67	HBC	\pm	$1.2 \ \overline{p} p \rightarrow (K^0 \pi)^{\pm} K^{\mp}$	VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMEN	ΝT
889	± 3.0	600	BARLOW	67	HBC	±	$1.2 \ \overline{p} p \rightarrow (K^0 \pi)^{\pm} K \pi$	895.81±0.19 OUR A	WERAGE	Prror includes scale	e factor of 1	.4. See t	the ideogram below.
891	± 2.3	620	² DEBAERE	67 B	HBC	+	$3.5 K^+ p \rightarrow K^0 \pi^+ p$	8954 +02 +02	243k 1	³ DFL-AMO-SA 1	11 BARR	$D^+ \rightarrow$	$K^{-}\pi^{+}e^{+}\nu$
891.0	± 1.2	1700	³ MOJCICKI	64	HBC	_	1.7 $K^- p \rightarrow \overline{K}^0 \pi^- p$	$805.7 \pm 0.2 \pm 0.2$	1/11/ 1			ν+ .	$K^{-}\pi^{+}\pi^{+}e$
• • •	We do not u	se the follo	owing data for av	verage	es, fits,	limits,	etc. • • •	095.7 ⊥0.2 ⊥0.5	1416		DA CLLU	$D^{+} \rightarrow$	
893.5	± 1.1	27k	⁴ ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow \ K^+ K^- \pi^0$	$895.41 \pm 0.32 + 0.33 - 0.43$	18k ¹	⁵ LINK 0	51 FOCS	$D^+ \rightarrow$	$K^- \pi^+ \mu^+ u_\mu$
890.4	$\pm 0.2\ \pm 0.5$	$80\!\pm\!0.8k$	⁵ BIRD	89	LASS	_	$11 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$	896 ±2		BARBERIS 9	8e OMEG	450 pp	$\rightarrow p_f p_c K^* \overline{K}^*$
890.0	± 2.3	800	^{2,3} CLELAND	82	SPEC	+	$30 \ K^+ p \rightarrow \ K^0_{\varsigma} \pi^+ p$	895.9 +0.5 +0.2		ASTON 8	8 LASS	$11 K^{-1}$	$p \rightarrow K^{-}\pi^{+}n$
896.0	± 1.1	3200	^{2,3} CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K_S^{0} \pi^+ p$				2,000	^	
893	± 1	3600	^{2,3} CLELAND	82	SPEC	_	50 $K^+ p \rightarrow K^{0}_{S} \pi^- p$						
896.0	± 1.9	380	DELFOSSE	81	SPEC	+	50 $K^{\pm}p \rightarrow K^{\pm}\pi^{0}p$						
886.0	± 2.3	187	DELFOSSE	81	SPEC	_	50 $K^{\pm}p \rightarrow K^{\pm}\pi^{0}p$						
894.2	± 2.0	765	² CLARK	73	HBC	_	3.13 $K^- p \rightarrow \overline{K}^0 \pi^- p$						
894.3	± 1.5	1150	^{2,3} CLARK	73	HBC	_	3.3 $K^- p \rightarrow \overline{K}^0 \pi^- p$						
892.0	± 2.6	341	² SCHWEING.	68	HBC	_	5.5 $K^- p \rightarrow \overline{K}^0 \pi^- p$						

1.2 Ex: $K\pi$ scattering: P-wave

Important Input for CP violation in heavy meson decay

3.3 Kappa(800)

 The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data Problem: no other precise data
 Descotes-Genon, Moussallam'06

3.3 Kappa(800)

 The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data improvement!

12 GeV Approved Experiments by PAC Days

Торіс	Hall A	Hall B	Hall C	Hall D	Other	Total
The Hadron spectra as probes of QCD		119		540		659
The transverse structure of the hadrons	145.5	85	102	25		357.5
The longitudinal structure of the hadrons	65	230	165			460
The 3D structure of the hadrons	409	872	212			1493
Hadrons and cold nuclear matter	180	175	201		14	570
Low-energy tests of the Standard Model and Fundamental Symmetries	547	180		79	60	866
Total Days	1346.5	1661	680	644	74	4405.5
Total Days – Without MIE Days	697.5	1661	680	644	28	3710.5
Total Approved Run Group Days (includes MIE)	1346.5	826	637	424	74	3307.5
Total Approved Run Group Days (without MIE)	528.5	826	637	424	28	2443.5
Total Days Completed	20	15	0	25	0	60
Total Days Remaining	508.5	811	637	399	28	2383.5
DEPARTMENT OF Office of Science June 2016	11					Jef

Bob McKeown's talk at 2016 UG meeting

JLab Operations Budget ONP Briefing

- During FY01-FY12, CEBAF ops averaged 34.5 weeks/year (best year FY05 at 42 weeks)
- For 12 GeV era we estimate "optimal" operations at 37 weeks per year
- FY17 Pres. Budget includes JLab ops at \$104M
 - would fund 23 weeks (+ 3 weeks from 12 GeV project)
- FY18+ at cost of living implies 23 weeks/year running (62% of optimal)
- We propose FY18+ at 30 weeks/year (81%), will require ~\$6M increase in operations budget.

- Slide from Mont's talk at 2016 UG meeting
- Hall D Physics Program will be completed in 2-3 years

Summary

- KN scattering still remains very poorly studied
- lack of data on excited hyperon states requires significant experimental efforts to be completed
- Experimental data on Kpi system needs to be updated for many different reasons
- Our preliminary studies show that production of few times $10^{4}K^{0}L/s$ at GlueX target in Hall D is
- -Proposed setup will have highest intensity K⁰_L beam ever used for hadron spectroscopy
- -Data obtained at Jlab will be unique and partially complementary to charged kaon data

Thank You!