Accelerator Status

Presenter Eduard Pozdeyev, Director of Accelerator Operations

Presented To: JLUO

June 10, 2024

CEBAF Performance Last Run

- Energy per linac: 1047 MeV
- Hall A
 - 10 45 uA, pass: 2-4
- Hall B
 - 50 200 nA, pass: 3-5
- Hall C
 - 5 80 uA, pass: 3-5
- Hall D, successful short test run
 - Added to the schedule
 - 4 days, 200 nA, pass 5.5

Downtime and Beam Availability (08/26/2023 – 05/20/2024)

Accelerator System Repair Report

August 26, 2023 - August 26, 2024

Category (% Repair Time)

August 26, 2023 - August 26, 2024

Delivered Research (Hours)*:	3,700.1
Delivered Beam Studies (Hours)*:	200.2
Delivered Tuning & Restore (Hours)*:	490.4
Total Delivered (Hours)*:	4,390.6
Budgeted Operations (Hours)*:	5,976.0
Total Delivered / Budgeted (%)*:	73.5%
Unscheduled Failures (Hours)*:	1,445.7
Total Scheduled (Hours)*:	5,836.3
Research / Scheduled (%)*:	63.4%
Reliability (%) [*] :	75.2%

 Two significant incidents caused by CEBAF gun: 1) field emission in Nov/Dec 2023 and 2) beam strike event in Mar/Apr 2024 caused by laser shutter failure.

Reliability Comparison FY24 to FY23

- Significant improvement in RF, Beam Transport, and Magnet reliability
 - Improvement due to focus on maintenance, beam tuning, and their optimization
 - Added accelerator gradient to CEBAF during last SAD
 - Lower beam intensity this run
- Without gun failures, reliability would be at 83.5% in FY24

Category	FY23 Downtime, h (/%)	FY24 Downtime (h/%)	Progress (in relative terms)
RF	300 (7%)	222 (4%)	-37% \downarrow
Beam Transport	244 (6%)	156 (3%)	-45% ↓
Magnets/DC	229 (5%)	72 (1%)	-73% ↓
Gun	2 (0%)	353 (7%)	+16717% ↑
Scheduled hours	4307	5027	

Weekly CEBAF Reliability Last Run (08/26/2023 – 05/20/2024)

- Two significant downtime events that impacted reliability
 - Gun field emission, Nov/Dec 2023, and
 - Gun laser shutter failure, Mar/Apr 2024

Gun field emission required reducing gun HV and injector energy. **Root cause:**

Design and test processes for the new gun did not follow best engineering practices.

2 Gun laser shutter was not in the right position after maintenance and failed to stop the laser beam, causing beam strike event.

Root causes:

1) Inadequate configuration control

2) Gun laser system can fail and send full beam for tens of milliseconds without ability to stop it.

Various Improvements Over SAD 2023 and Last Run

- Refurbished two C100 CMs, 1L26 and 2L26 (SAD 23)
- Successful plasma processing of four CMs in SL (SAD 23)
 - Operational energy gain of 44 MeV. The gradient gain seems to stick.
- Optimization of C100 Q_L to reduce required RF power and improve cavity stability under high beam loading (SAD 23)
- C100 klystron power increased
 - C100 klystron cathode voltage and power were increased
 - Klystrons were operated with reduced cathode voltage, not meeting power requirements
- Beam-based linac cavity field calibration
 - Optimal voltage and power settings matching model
- LLRF, multiple improvements to the control algorithm
- Optimized voltage of (some) BLMs to reduce false MPS trips

High Power Beam Test, 5/20/2024

- 85 uA beam current to Hall C @ 5 pass => 900 kW
- 860 kW for 2 min (1L22 RF trip), 800 kW for 3 min (1L23 RF trip)
- Maximum beam power was limited by available RF power
- We need a few days of sustained effort to push power beyond this level after SAD

Accelerator Performance Limitations

SRF

- C100 cavity gradient degradation due to field emission and linac contamination
- Loss of cryomodules and cavities to vacuum leaks and other events
- Cavity faults caused by microphonics and other effects.

• RF

- Performance of C100 RF stations lags relatively to the requirement
- Loss of RF stations during run
- C20, C50, C75 Klystron degradation needs attention
- Outdated and inadequate accelerator systems, limit understanding of the machine, postmortem capabilities, and application of advanced techniques such as AI/ML
 - LLRF, earlier, analog versions are still prevalent at CEBAF
 - BPMs, slow DAQ (most), no buffering for postmortem processing
 - BLMs, slow DAQ
 - (No) Global timing system to synchronize CEBAF systems
 - Mitigation: AIP projects

SAD 2024 Work: SRF, RF, LLRF

SRF

- Two new C75 CMs: 1L09 and 2L05
- Refurbished C100 in 1L22
- Plasma process North Linac CMs and possibly some in South Linac
- Helium process some South Linac CMs and injector 0L03
- Additional work to address degradation issues in some cavities

- RF
 - New HP/LLRF systems for 1L09 and 2L05 C75 CM
 - 8 kW circulators for C75 CMs to utilize full power of 8 kW klystrons
 - Change houses in some zones, start systematic RF refurbishment
- LLRF fiber optics link for MO
 - Reduces sensitivity of South Linac to lightning

SAD 2024 Work: Other Systems

- Injector Fix
 - Modify, install, and test the new spherical gun (again)
 - Fix injector solenoids
- Synchrotron light interferometer will be installed for Hyper Nuclear Experiments
- Personnel Safety System
 - BSY PSS system upgrade to new system
- Irradiation line in the injector
 - To irradiate LiD and ammonia polarized cryogenic targets
- Beam degrader installation to simulate and study transport of e+ beam
- Facilities:
 - Hall D-line LCW deOx system to address D-line magnet clogging
 - Tunnel and injector ventilation to reduce impact of outside temperature fluctuations

Plan For Beam Studies Next Year

MOLLER

- Continue Hall A Fast Feedback / Feedforward tests
- Parity quality injector tests
- K-Long beam transport and impact on MOLLER beam
 - Postponed to coming run (FY25) due to issues with the injector solenoids.
- Hyper-Nuclear/MOLLER
 - Revive and test CREST procedure to keep beam on-crest and reduce and control energy spread/drift
 - Revive and test MoMod similar to CREST
 - Test of synchrotron light interferometer for energy spread measurement
- BLM and Ion Chamber settings optimization to reduce false MPS trips
 - At the beginning of the run
- RF calibration test at the beginning of the run
- High power runs to identify intensity limitations (>1 MW)
- Irradiation Beam line test
- Beam degrader test (e+ effort)

CEBAF Energy Reach Evolution and Next Year Projection

CPP stopped and turned around energy degradation and reliability decrease

celerator Facility

Energy reach corresponds to 10 RF trips/h for zero beam current.

Maximum beam energy Is lower for a high beam current because of insufficient RF power.

Beam Parameters For Next Run

- Proposed Beam Energy 1060 MeV/linac
 - 10.7 GeV after 5 passes; 11.8 GeV after 5.5 passes
 - Meets minimum MOLLER requirements
 - Next option 1100 MeV can be problematic towards the end of the run, needs improvements in RF.
- Total beam power goal >900 kW
- Polarization to all Halls
- RF trip rate at these parameters ~5 trip/h

CPP Energy Reach Project Is Critical For Success

Required CEBAF Energy Reach with margin can be nearly achieved in FY 26 and exceeded in FY27 with the proposed profile.

Challenges And Risks

- Impact of delayed and reduced budget in FY24
 - Unable to procure and install all-metal gate valves this SAD due to late arrival of funding and procurement freeze. This delays effort to mitigate gradient degradation in CEBAF by a year.
 - Delay in refurbishment of klystrons (CPP). Risk of losing potential vendor for klystron refurbishment.
 - 50% reduction in funding of the CPP Obsolescence program. Risk of catastrophic failures increases.
- Safety issues have negative impact on operations
 - Take focus and effort away from operations and reliability
 - Make SAD and maintenance work planning and execution difficult
- Risk: insufficient CPP funding
 - Insufficient funds for CPP can further affect our ability to address energy reach and reliability gaps
- Risk: Insufficient funding of AIPs, favorable Scenario 2 does not materialize
 - Upgrade of LLRF, BPM, BLM, Timing System can be significantly delayed limiting our ability to improve CEBAF performance

15

Path Forward

- Continue critical CPP effort to close energy and reliability performance gaps
- Reestablish CEBAF SRF cleanness effort, implement it as part of CPP, and include plasma processing into operations
- Review and improve CEBAF RF performance
- Improve beam transport and tuning procedures and ensure continuity of experience with machine tuning within AD
- Focus on improving reliability, restore reliability team, and continue effort to turn maintenance from reactive to proactive
- Upgrade CEBAF accelerator system through AIPs and expedite upgrades if possible
- Develop Accelerator Management Plan that will summarize CEBAF path forward for next five years (by end of CY24)

Thank You

Main Recurring Sources of Downtime

- RF failures are consistently large contribution to downtime, ~30%
 - Klystron HV and high-power electronics
 - High power components (transformers, breakers, etc.)
 - Hose failure
- Beam transport consistently is a high contribution, ~15%-25%
 - Beam losses due to optics and orbit drifts
 - Injector tuning was difficult this year because of solenoids
 - Suboptimal HV settings and location of BLMs causing false trips
- Rare catastrophic failures significantly and systematically contribute to downtime
 - Example, Gun failure this run
- Outdated and inadequate accelerator systems (see slide 8)

- Field emission free operation was improved by 59.1 MeV (24%).
- An average improvement of 2.7 MV/m.
- 5 cavities were field emission free after processing.

Success of plasma processing supports more aggressive curve for CEBAF energy reach

CEBAF Operations Overview