K_{Long} beam experiment in JLAB and search for pentaquark states in the meson photoproduction reactions

Andrey Sarantsev

RNC "Kurchatov Institute" PNPI (Russia)

K_{Long} beam motivation

- 1. Search for the missing $\Sigma\text{-hyperons}$
- 2. Search for the pentaquark states predicted by the chiral soliton model (Dyakonov, Petrov, Polyakov).

		J^P	Status	Mass	Width
singlet	$\Lambda(1405)$	$1/2^{-}$	****	$1405^{+1.3}_{-1.0}$	50.5 ± 2.0
N(1535)	$\Lambda(1670)$	$1/2^{-}$	****	1660 - 1680	25 - 50
N(1650)	$\Lambda(1800)$	$1/2^{-}$	***	1720 - 1850	200 - 400
singlet	$\Lambda(1520)$	$3/2^{-}$	****	1519.5 ± 1.0	15.6 ± 1.0
N(1520)	$\Lambda(1690)$	$3/2^{-}$	****	1685 - 1695	50 - 70
N(1675)	$\Lambda(1830)$	$5/2^{-}$	****	1810 - 1830	60 - 110
N(2190)	$\Lambda(2100)$	$7/2^{-}$	****	2090 - 2110	100 - 250
N(1440)	$\Lambda(1600)$	$1/2^{+}$	***	1560 - 1700	50 - 250
N(1710)	$\Lambda(1810)$	$1/2^{+}$	***	1750 - 1850	50 - 250
N(1700)	$\Lambda(1890)$	$3/2^{+}$	****	1850 - 1910	60 - 200
N(1680)	$\Lambda(1820)$	$5/2^{+}$	****	1815 - 1825	70 - 90
N(2060)	$\Lambda(2110)$	$5/2^{+}$	***	2090 - 2140	150 - 250

Table 1: $\Lambda\text{-hyperons}$ used in the first fit of the data.

		J^P	Status	Mass	Width
N(1440)	$\Sigma(1660)$	$1/2^{+}$	***	1630 - 1690	40 - 200
$\Delta(1230)$	$\Sigma(1385)$	$3/2^{+}$	****	1382.80 ± 0.35	36.0 ± 0.7
$N(1680), \Delta(1905)$	$\Sigma(1915)$	$5/2^{+}$	****	1900 - 1935	80 - 160
$N(1990), \Delta(1950)$	$\Sigma(2030)$	$7/2^{+}$	****	2025 - 2040	150 - 200
N(1520)	$\Sigma(1670)$	$3/2^{-}$	****	1665 - 1685	40 - 80
$N(1535), \Delta(1620), N(1650)$	$\Sigma(1750)$	$1/2^{-}$	***	1730 - 1800	60 - 160
N(1675)	$\Sigma(1775)$	$5/2^{-}$	****	1770 - 1780	105 - 135
$N(1700), \Delta(1700)$	$\Sigma(1940)$	$3/2^{-}$	***	1900 - 1950	150 - 300

Table 2: Σ -Hyperons used in the first fit of the data.

Many Σ states are missing.

The πN (KN) interaction. Three measurements are needed to fix quantum numbers

$$A_{\pi N} = \omega^* \left[G(s,t) + H(s,t)i(\vec{\sigma}\vec{n}) \right] \omega' \qquad \vec{n}_j = \varepsilon_{\mu\nu j} \frac{q_\mu k_\nu}{|\vec{k}||\vec{q}|} \,.$$
$$G(s,t) = \sum_L \left[(L+1)F_L^+(s) + LF_L^-(s) \right] P_L(z) \,,$$
$$H(s,t) = \sum_L \left[F_L^+(s) - F_L^-(s) \right] P_L'(z) \,.$$

Differential cross section in c.m.s. of the reaction

$$|A|^{2} = \frac{1}{2} \operatorname{Tr} \left[A_{\pi N}^{*} A_{\pi N} \right] = |G(s,t)|^{2} + |H(s,t)|^{2} (1-z^{2})$$

the recoil asymmetry:

$$P = \frac{\text{Tr} \left[A_{\pi N}^* \sigma_2 A_{\pi N}\right]}{2|A|^2 \cos \phi} = \sin \Theta \frac{2Im \left(H^*(s, t)G(s, t)\right)}{|A|^2}$$

•

and the rotation parameter.

Kaon beam motivation

There is a hope to observe the baryon multiplets and therefore to confirm the states observed in the Nucleon and Delta sector.

$K^- p \to K^0 n$	$K^-p \to K^-p$	$K^-p\to\omega\Lambda$
$K^-p\to\pi^0\Lambda$	$K^-p\to\eta\Lambda$	$K^- p \to \pi^+ \Sigma^-$
$K^- p \to \pi^0 \Sigma^0$	$K^- p \to \pi^- \Sigma^+$	$K^- p \to \pi^0 \pi^0 \Lambda$
$K^- p \to K^+ \Xi^-$	$K^- p \to K^0 \Xi^0$	$K^- p \to \pi^0 \pi^0 \Sigma^0$

Table 3: List of reactions used in the partial wave analysis.

Analysis of the Kp collision reactions (Preliminary) (M.Matveev)

		ANL-Osaca	Bn-Ga	Model A	Model B	Bn-Ga
$K^- p \to K^- p$	$d\sigma/d\Omega$	3962	5170	3.07	2.98	1.80
	P	510	1180	2.04	2.08	1.41
$K^- p \to \bar{K}^0 n$	$d\sigma/d\Omega$	2950	3445	2.67	2.75	1.55
$K^- p \to \pi^- \Sigma^+$	$d\sigma/d\Omega$	1792	2455	3.37	3.49	1.45
	P	418	593	1.30	1.28	2.09
$K^- p \to \pi^0 \Sigma^0$	$d\sigma/d\Omega$	580	691	3.68	3.50	1.96
	P	196	124	6.39	5.80	2.41
$K^- p \to \pi^+ \Sigma^-$	$d\sigma/d\Omega$	1786	2082	2.56	2.18	1.59
$K^- p \to \pi^0 \Lambda$	$d\sigma/d\Omega$	2178	2478	2.59	3.71	1.66
	P	693	892	1.41	1.73	1.25
$K^- p \to \eta \Lambda$	$d\sigma/d\Omega$	160	160	2.69	2.03	1.50
$K^- p \to K^0 \Xi^0$	$d\sigma/d\Omega$	33	67	1.24	1.61	0.89
$K^- p \to K^+ \Xi^-$	$d\sigma/d\Omega$	92	193	2.05	1.74	1.31
$K^- p \to \Lambda \omega$	$d\sigma/d\Omega$	_	300	_	_	1.03
$K^-p\to\Lambda\omega$	$ ho_{00}, ho_{10}, ho_{1-1}$	_	158	_	_	1.30

J^P		Known state	New state	Mass
$1/2^{+}$	N(1440)	$\Sigma(1660)$		
$3/2^{+}$	$\Delta(1230)$	$\Sigma(1385)$		
$5/2^{+}$	$N(1680), \Delta(1905)$	$\Sigma(1915)$????	
$7/2^{+}$	$N(1990), \Delta(1950)$	$\Sigma(2030)$????	
$3/2^{-}$	N(1520)	$\Sigma(1670)$		
$1/2^{-}$	$N(1535), \Delta(1620), N(1650)$	$\Sigma(1750)$	$\Sigma(1620)$	1680 ± 8
			$\Sigma(1900)$	1936 ± 10
$5/2^{-}$	N(1675)	$\Sigma(1775)$		
$3/2^{-}$	$N(1700), \Delta(1700)$	$\Sigma(1940)$	$\Sigma(1860)$	1856 ± 10
$1/2^{-}$	N(1895)		$\Sigma(2120)$	2158 ± 25

Table 4: Σ -Hyperons Observed states

Let us consider the decay of the isospin 0 and isospin 1 states into K^-p and K^0n

$$|A(K^{-}p)|^{2} = \left(A_{1}\frac{1}{\sqrt{2}} + A_{0}\frac{1}{\sqrt{2}}\right)^{2} = \frac{1}{2}\left(|A_{1}|^{2} + |A_{0}|^{2} + 2Re(A_{1}A_{0}^{*})\right)$$
$$|A(K^{0}n)|^{2} = \left(A_{1}\frac{1}{\sqrt{2}} - A_{0}\frac{1}{\sqrt{2}}\right)^{2} = \frac{1}{2}\left(|A_{1}|^{2} + |A_{0}|^{2} - 2Re(A_{1}A_{0}^{*})\right)$$

$$A_{KN} = \omega^* \left[G(s,t) + H(s,t)i(\vec{\sigma}\vec{n}) \right] \omega' \qquad \vec{n}_j = \varepsilon_{\mu\nu j} \frac{q_\mu k_\nu}{|\vec{k}||\vec{q}|} \,.$$

Differential cross section in c.m.s. of the reaction

$$|A|^2 = \frac{1}{2} \text{Tr} \left[A_{\pi N}^* A_{\pi N} \right] = |G(s,t)|^2 + |H(s,t)|^2 (1-z^2)$$

the recoil asymmetry:

$$P = \frac{\text{Tr} \left[A_{\pi N}^* \sigma_2 A_{\pi N}\right]}{2|A|^2 \cos \phi} = \sin \Theta \frac{2Im \left(H^*(s, t)G(s, t)\right)}{|A|^2}.$$

Prediction for the recoil asymmetry $K_L p \to K^0 p(K^+ n)$

Prediction for $\frac{d\sigma}{d\Omega}(K_L p \to \pi^0 \Sigma^+(\pi^+ \Sigma^0))$

Prediction for the recoil asymmetry $K_L p \to \pi^0 \Sigma^+ (\pi^+ \Sigma^0)$

DIANA/ITEP:

Charge exchange expt.

- $K^+n \rightarrow \Theta^+(1540) \rightarrow pK_s^0$
- 'quasifree' in Xe bubble chamber
- $K^+Xe \rightarrow Xe'pK_s^0$
- $\bullet\ {\rm K}^+$ momentum from range in Xe

- Stereo photos taken and evaluated
- secondary vertex $\mathbf{K_s^0} {\rightarrow} \pi^+ \pi^-$
- and a proton track
- Particle ID and momentum from track (density and range)
- \bullet 41,000 K^+ tracked
- 73 seen Θ^+ 300 produced ('two-body' cut, nK⁺)

The width of the Θ^+ is $<9~{\rm MeV}$

CLAS/Jlab:

- Torus magnet with 6 superconducting coils
- Liquid H₂/D₂ target, trigger counters
- Drift chambers with 35,000 cells
- TOF system
- Electromagnetic Pb/sci sandwich calorimeter
- Gas Cerenkov counters, ${\rm e}/\pi$ separation

Study of the reaction $\gamma d \rightarrow pn K^+ K^-$

- 1. Detected: K^+, K^-, p , hence "no spectator" nucleon
- 2. TOF for particle identification
- 3. Missing mass calculated and neutron reconstructed
- 4. Proposed reaction mechanisms:

- **1. Detected:** K^+, K^-, π^+
- 2. TOF for particle identification
- 3. Missing neutron reconstructed from kinematics

possible reaction mechanisms:

Present status of the search for exotic baryons $\Theta^+(1540)$ and $\Xi(1860)$

Does the $\Theta^+(1540)$ come from a N*(2400) ? 42 Θ^+

SAPHIR/ELSA:

γ p -> n K+Ks

Right: with/without $\cos artheta_{\mathrm{K_s^0}} > 0.5$

Left: $\cos artheta_{\mathrm{K_s^0}} > 0.5$

Old and New Signal from LEPS/SPring8

N. Muramatsu

• Mix K⁺, K⁻, γ from different events in LH₂ data.

• $\Lambda(1520)$ contribution was removed from the sample.

MM^c(γ,K⁺) GeV/c²

MM^c(γ,K⁻) GeV/c²

Θ^+ : Comparison of different results

experiment	reaction	decay	mass	statistical
		channel	(MeV)	significance
Spring-8	$\gamma n \to K^- \Theta^+$	K^+n	1540 ± 10	5σ
DIANA	$K^+n \to K^-\Theta^+$	$K_S^0 p$	1539 ± 2	4σ
SAPHIR	$\gamma p \to \overline{K^0_S} \Theta^+$	K^+n	1540 ± 6	5σ
CLAS	$\gamma n \to K^- p \Theta^+$	K^+n	1542 ± 5	5σ
CLAS	$\gamma p \to K^- \pi^+ \Theta^+$	K^+n	1555 ± 10	8σ
CLAS	$\gamma p \to \overline{K^0_S} \Theta^+$	K^+n	1571 ± 10	
BC	$\nu A \to \Theta^+ \mathbf{X}$	$K^0_S p$	1533 ± 5	7σ
HERMES	$ed \rightarrow \Theta^+ \mathbf{X}$	$K_S^0 p$	1526 ± 5	6σ

width determination limited by experimental resolution $\Gamma < 20 MeV$

The most worrying results from kaon (meson) beams

$$\sigma = \frac{4\pi}{k^2} \frac{(2J+1)0.389}{(2S_1+1)(2S_2+1)} B_{in} B_{out}$$

$$k^2 = \frac{(M^2 - (m_p + m_K)^2)(M^2 - (m_p - m_k)^2)}{4M^2}$$

$$M = 1540 \text{ MeV} \quad k^2 = 0.073 \text{ MeV}^2$$

$$\text{If e.g. } B_{in} = B_{out} = 1$$

$$\sigma = 70 \text{ } mb$$

Total cross section:

Study of K^+ -nucleon scattering

R.A. Arndt, I.I. Strakovsky and R.L. Workman

•1,1 -11 (a) P • Γ=0.3 MeV • Γ=0.7 MeV $\Delta \chi^{2}$ $\Delta \chi^2$ D • Γ=5 MeV • Γ=2 MeV (b) P **Restrictions on** M (MeV) M (MeV) width of Θ^+ : $\Gamma < 2 MeV$ 1 1 1 1 Γ=0.3 MeV
 Γ=0.7 MeV • Γ=0.3 MeV • Γ=0.7 MeV $\Delta \chi^2$ $\Delta \chi^{2}$ P₀₃ S₀₁ (b) (a) . -40 ... 1520 -40 1520 M (MeV)

M (MeV)

Combined analysis of Θ^+ production in Kaon induced experiments J. Haidenbauer, S. Krewald, A. Sibirtsev, Ulf-G. Meissner

Reactions: $K^+d \to K^0 + p + p$ $K^+d \to K^+ + n + p$ $K^+d \to K^+d$ $K_L p$ - scattering $\Gamma < 1$ MeVeven $\Gamma < 0.8$ MeV

 $\mathcal{C} \propto \frac{1}{R^2} \sum_{\ell} \sin^2 S_{\ell}(R)$

M. Longo

HyperCP from Fermilab

FNAL E871/HyperCP Experiment

- Designed for studying CP violation in the hyperon decay sequence, $\Xi \rightarrow \Lambda \pi$, $\Lambda \rightarrow p\pi$.
- Hyperon channel, fast chambers, simple trigger, high resolution spectrometer, fast DAQ
- Took data in 1997 and 1999
- Mixed beam with protons, pions, kaons, hyperons, with a broad momentum spread, ~120-250 GeV/c.

Data Summary

- 30,000 Exabyte tapes.
- Total data comprise ~120 terabytes, a volume of data greater than that in the Library of Congress.
- $\sim 230 \times 10^9$ events on tape
- ~2.5 x 10⁹ Ξ^- and $\overline{\Xi}^+$ decays.
- 0.5 x 10⁹ K decays
- 19 x 10⁶ Ω^{-} and $\overline{\Omega}^{+}$ decays.
- Beam polarity changed by reversing magnets.
- ~50% of triggers came from titanium and kapton thin windows upstream of decay region, or from nearby material.

Ghost tracks with can produce a peak at 1.54 GeV

High Statistics CLAS(d) result

• Model-independent uppper limit 95% CL for Θ^+ is < 20nb.

Jefferson Gab

 With assumptions about the spectator, we can set a modeldependent upper limit to the cross section of < 4-5 nb.

$N(1710) \ \mathrm{and} \ N(1680)$

$N\pi \rightarrow N\pi S_{11}$, P_{11} and P_{13} waves

The πN (KN) interaction.

$$\begin{aligned} A_{\pi N} &= \omega^* \left[G(s,t) + H(s,t) i(\vec{\sigma}\vec{n}) \right] \omega' \qquad \vec{n}_j = \varepsilon_{\mu\nu j} \frac{q_\mu k_\nu}{|\vec{k}||\vec{q}|} \,. \\ G(s,t) &= \sum_L \left[(L+1) F_L^+(s) + L F_L^-(s) \right] P_L(z) \,, \\ H(s,t) &= \sum_L \left[F_L^+(s) - F_L^-(s) \right] P_L'(z) \,. \end{aligned}$$

•

•

Differential cross section in c.m.s. of the reaction

$$|A|^{2} = \frac{1}{2} \operatorname{Tr} \left[A_{\pi N}^{*} A_{\pi N} \right] = |G(s,t)|^{2} + |H(s,t)|^{2} (1-z^{2})$$

the recoil asymmetry:

$$P = \frac{\text{Tr} \left[A_{\pi N}^* \sigma_2 A_{\pi N}\right]}{2|A|^2 \cos \phi} = \sin \Theta \frac{2Im \left(H^*(s, t)G(s, t)\right)}{|A|^2}$$

and the rotation parameter.

$$|A|^{2} = |G(s,t)|^{2} + |H(s,t)|^{2}(1-z^{2}) \qquad |A|^{2} \frac{P}{\sin\Theta} = 2Im\left(H^{*}(s,t)G(s,t)\right).$$

$$\underline{S_{1,1}}; \quad G = F_0^+; \quad H = 0; \quad |A|^2 = |F_0^+|^2 \quad (1)$$

$$\underline{P_{1,1}}; \quad G = F_1^-z; \quad H = -F_1^-; \quad |A|^2 = |F_1^-|^2 \quad (2)$$

$$\underline{P_{1,3}}; \quad G = 2F_1^+z; \quad H = F_1^+; \quad |A|^2 = |F_1^+|^2(3z^2+1)$$

 \mathbf{T}

 $\begin{array}{ll} \mbox{Both } S_{11} \mbox{ and } P_{11} \mbox{ distributions are flat. Recoil asymmetry is zero for single partial wave.} \\ \underline{S_{1,1} + P_{1,1}}: & P \frac{|A|^2}{\sin \Theta} = -2Im(F_0^+ F_1^{-*}) & |A|^2 = |F_0^+|^2 + |F_1^-|^2 + 2zRe(F_0^{+*} F_1^-) \\ \underline{S_{1,1} + P_{1,3}}: & P \frac{|A|^2}{\sin \Theta} = 2Im(F_0^+ F_1^{+*}) & |A|^2 = |F_0^+|^2 + |F_1^+|^2 (3z^2 + 1) + 4zRe(F_0^{+*} F_1^+) \\ \underline{P_{1,1} + P_{1,3}}: & P \frac{|A|^2}{\sin \Theta} = 6zIm(F_1^{+*} F_1^-) & |A|^2 = |F_1^+ - F_1^-|^2 + z^2 \left(3|F_1^+|^2 - 2Re(F_1^{+*} F_1^-)\right). \end{array}$

S and P-waves can be extracted from the differential cross section and recoil asymmetry. For higher partial waves the rotation parameter is needed.

The fit of the the $\pi^- p \to K \Lambda$ reaction

Full experiment for $\pi N \to K\Lambda$: differential cross section, analyzing power, rotation parameter.

A clear evidence for resonances which are hardly seen (or not seen) in the elastic reactions: $N(1710)P_{11}$, $N(1900)P_{13}$,

The total cross section for the reaction $\pi^- p \to K^0 \Lambda$ and contributions from leading partial waves.

The fit of the the $\pi^- p \to K\Lambda$ reaction $N(1710): M = 1690 \pm 15$ MeV, $-2Im = 155 \pm 25$ MeV

Solution with interference between S_{11} states

The description of the differential cross section and GRAAL data is notably worse

Limit for the production of $P_{11}(1680)$: $|A^{\frac{1}{2}}|Br(\eta n) < 5 \text{ Gev}^{-\frac{1}{2}}10^{-3}$

In c.m.s. of the reaction

$$A = \sum_{i} u(k_1) V_{\alpha_1 \dots \alpha_n}^{*(i\pm)\mu} F_{\alpha_1 \dots \alpha_n}^{\beta_1 \dots \beta_n} N_{\beta_1 \dots \beta_n}^{(\pm)} u(q_1) \varepsilon_{\mu} B W_L^{\pm}(s) = \omega^* J_{\mu} \varepsilon_{\mu} \omega' ,$$

$$J_{\mu} = i\mathcal{F}_1\sigma_{\mu} + \mathcal{F}_2(\vec{\sigma}\vec{q})\frac{\varepsilon_{\mu ij}\sigma_i k_j}{|\vec{k}||\vec{q}|} + i\mathcal{F}_3\frac{(\vec{\sigma}\vec{k})}{|\vec{k}||\vec{q}|}q_{\mu} + i\mathcal{F}_4\frac{(\vec{\sigma}\vec{q})}{\vec{q}^2}q_{\mu} .$$

$$\mathcal{F}_{1}(z) = \sum_{L=0}^{\infty} [LM_{L}^{+} + E_{L}^{+}]P_{L+1}'(z) + [(L+1)M_{L}^{-} + E_{L}^{-}]P_{L-1}'(z) ,$$

$$\mathcal{F}_{2}(z) = \sum_{L=1}^{\infty} [(L+1)M_{L}^{+} + LM_{L}^{-}]P_{L}'(z) ,$$

$$\mathcal{F}_{3}(z) = \sum_{L=1}^{\infty} [E_{L}^{+} - M_{L}^{+}]P_{L+1}''(z) + [E_{L}^{-} + M_{L}^{-}]P_{L-1}''(z) ,$$

$$\mathcal{F}_{4}(z) = \sum_{L=2}^{\infty} [M_{L}^{+} - E_{L}^{+} - M_{L}^{-} - E_{L}^{-}]P_{L}''(z) .$$

Differential cross section and polarization observables

$$\mathcal{I}(\theta) = |E_0^+|^2 + |M_1^-|^2 - 2z(\operatorname{Re}E_0^+\operatorname{Re}M_1^- + \operatorname{Im}E_0^+\operatorname{Im}M_1^-))$$

$$\Sigma \mathcal{I}(\theta) = \frac{3\sin^2 \theta}{2} \operatorname{Re}\{-3|E_1^+|^2 + |M_1^+|^2 - 2M_1^{-*}(E_1^+ - M_1^+) + 2E_1^{+*}M_1^+\}$$

$$T\mathcal{I}(\theta) = 3\sin\theta \operatorname{Im}\{E_0^{+*}(E_1^+ - M_1^+) - z[M_1^{-*}(E_1^+ - M_1^+) - 4M_1^{+*}E_1^+]\}$$

 $P\mathcal{I}(\theta) = -2\sin\theta \{\operatorname{Re}E_0^+\operatorname{Im}M_1^- - \operatorname{Im}E_0^+\operatorname{Re}M_1^-\}$

 $H\mathcal{I}(\theta) = -2\sin\theta \{\operatorname{Re}E_0^+\operatorname{Im}M_1^- - \operatorname{Im}E_0^+\operatorname{Re}M_1^-\}$

The description of the differential cross section and beam asymmetry is notably worse

The description of the ${\cal T},{\cal P},{\cal H}$ observables

Summary

- The peak in the $\gamma n
 ightarrow \eta n$ reaction is defined by the interference inside S-wave
- The K_{Long} beam experiment is the nice tool for the search of the Σ hyperon states
- The pentaquark $\Theta^+(1540)$ state (if it exists) should be a very narrow one, with width $\Gamma < 1~{\rm MeV}$
- Its partner ${\cal N}(1680)$ should also be a very narrow. But it is not clear where it should decay
- If we see a signal from $\Theta^+(1540)$ there is a chance to observe its Σ -partner