CPS meeting 06/12/2023
V. Baturin

Outline

Problem of Absorber Temperature. Qualitative consideration.
New FLUKA simulations :

1. Radiation map from beam halo $\mathrm{r}<0.5 \mathrm{~cm}$.
2. Radiation map for optimized shield (to meet $25 \mathrm{rem} / \mathrm{hr}$ requirement).
3. Energy deposition maps in Absorber to compare ANSYS and MATHEMATICA.

Now we have 15 maps (13+2) for temperature field calculations.

Why Mathematica predicts lower temperature for a current CPS version.

Energy flow : $\quad(\mathrm{dP} / \mathrm{dV}) \pi \boldsymbol{\rho}^{2} \Delta \mathrm{z}=-\mathrm{k}(\mathrm{dT} / \mathrm{dr}) \mathrm{r} 2 \varphi \Delta \mathrm{z}$, $(\mathrm{dP} / \mathrm{dz})=(\mathrm{dP} / \mathrm{dV}) \boldsymbol{\pi} \boldsymbol{\rho}^{2}$

$$
(\mathrm{dT} / \mathrm{dr})=-(2 \mathrm{k} \varphi)^{-1}(\mathrm{dP} / \mathrm{dz}) \mathrm{r}^{-1}
$$

Integration from R to r yields

$$
\varphi=\sim \mathrm{b} / \mathrm{R} \quad \mathrm{~T}(\mathrm{r})-\mathrm{T}(\mathrm{R})=(2 \mathrm{k} \varphi)^{-1}(\mathrm{dP} / \mathrm{dz}) \ln (\mathrm{R} / \mathrm{r})
$$

$$
\mathrm{T}(\boldsymbol{\rho})-\mathrm{T}(\mathrm{R}) \propto(\mathrm{R} / \mathrm{b}) \times(\mathrm{dP} / \mathrm{dz}) \ln (\mathrm{R} / \boldsymbol{\rho})
$$

$\mathrm{T}(\mathrm{R})$ is determined by T^{0} of coolant, contact area, and heat transfer coefficient (tabulated empirical value).

In Feb. version $\quad \varphi \sim 0.5$
In current version $\varphi \sim 1.5$
Expected $T(r)-T(R)$ is ~ 3 times lower compared Feb. version.
ANSYS $\mathbf{T}=\mathbf{2 5 0} \mathbf{C}$ vs Mathematics $\mathbf{T}=\mathbf{9 0} \mathbf{C}$.
(https://wiki.jlab.org/klproject/images/f/f2/Cps_absorber_temp_tim_02_27_23.pdf)
And ~ 2 times lower compared PD version due to twice higher ($\mathrm{dP} / \mathrm{dV}$) term.

Comments to the video. What is the wedge effect?

1) Consider e-beam as a cylinder diameter D with uniform density; direction $\mathrm{n}_{\mathrm{b}}=(0, \sin (\alpha), \cos (\alpha))$, where α pitch angle to the beam axis.
2) For a squared or wedge-like channels the hot spot is a cross section of a cylinder with a plane. Plane orientations: $\mathbf{n}_{\mathbf{1}}=(0,1,0)$-for squared channel, or $\mathbf{n}_{\mathbf{2}}=(\pm \cos (\varphi), \sin (\varphi), 0)$ - for 2 wedge planes obtained as $\pm \varphi$ - rotation of yz-plane around z-axis.

Impact angle is determined by $\left(\mathbf{n}_{\mathbf{b}}, \mathbf{n}_{\mathbf{1}}\right)=\sin (\alpha)$ or $\left(\mathbf{n}_{\mathbf{b}}, \mathbf{n}_{\mathbf{2}}\right)=\sin (\alpha) \sin (\varphi)=\sin (\vartheta)$ - pitch to wedge plane.
3) But in both cases the intersection is an ellipse with the area $S=\pi \mathrm{D} \times \mathrm{L}$, where L - ellipse large axis.
4) Pitch angle $\vartheta \sim D / L$.
5) Maximum L is constrained by the length of the beam channel ($L<L_{c} \sim 2 \mathrm{~m}$), or the wedge ($L<L_{w} \sim 0.5 \mathrm{~m}$).

- Therefore $\max \mathrm{dP} / \mathrm{dS} \propto \theta \propto \mathrm{L}^{-1}$ for the wedge is $\mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{w}}=4$ times higher.

Beam halo. Prompt Dose Equivalent around CPS.

- Annular beam halo $\mathrm{r}=0.5 \mathrm{~cm}$; halo fraction in the e-beam $=1 . \mathrm{E}-4$
- Scaled PDE from the beam pedestal is below 1 rem/h. May be neglected.
- Energy deposition map inside Absorber is available for T-calculations.

Prompt Dose Equivalent Map (rem/hr) < 500 ; B=0.9B ${ }_{\mathrm{n}}$

Modified shielding. Not yet optimized. Max Radius changed from 86 to 110 cm . May be not necessary.

PDE r vs z map in rem/hr z- profiles at the next slide.

Prompt Dose Equivalent (rem/hr) at $\mathrm{r}=150-180 \mathrm{~cm}$ from beam axis.

PDE rem/h $\mathrm{N}=11.25 \mathrm{E}+6$ top $1 / 4$-sph. bentcoil-65-m23ref1 91

PDE rem/h $\mathrm{N}=11.25 \mathrm{E}+6$ floor profile bentcoil-65-m23ref1 91

- PDE (rem/hr) meets the specification of the PAC48 proposal: $\mathrm{PDE}<25 \mathrm{rem} / \mathrm{h}$ at floor level=> 1.5 m .

SIMEVNE ($\mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$) and Si-electronics life time at 1.E+14 n/cm ${ }^{2}$

- At 1^{\prime} distance from CPS surface $\mathrm{Si} \mathrm{LT}=1 . \mathrm{E}+14 / 5 . \mathrm{E}+5=2 \mathrm{E}+8 \mathrm{~s}=6$ years.
- Coil LT $\sim>300$ years of continuous operation. $B=0.9 B_{n}$

Prompt Dose in downstream coil and its lifetime.

- A thicker layer of tungsten collar results in coil Dose $<1 . \mathrm{E}-9 \mathrm{GeV} / \mathrm{g} / \mathrm{e}$.
- Translate to Coil LT > 300 years of continuous operation.
- Magnetic field $\mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$

Power deposition maps to compare ANSYS and MATHEMATICA

- Cartesian and Cylindrical profiles are very close.

Next week plan

1. FLUKA simulations for 3.5 mm beam sigma.
2. Material weight.
3. Activation.
4. CPS optimisation.
