THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$K_L + p \rightarrow \pi^+ + \Lambda$

MARSHALL B. C. SCOTT

HTTPS://WWW.LINKEDIN.COM/IN/MARSHALL-SCOTT-PH-D-17AB191B9

KL4 RXN AND GENERATING STEPS

- KI4 : K⁰_L+ p $\rightarrow \pi^+$ + A $-\Lambda \rightarrow$ p + π^- (63.9%) ; Current priority $-\Lambda \rightarrow$ n + π^0 (35.8%)
- Backgrounds : (Primary) $K^0_L + p \rightarrow \pi^+ + \Sigma^0$, (Secondary) $K^0_L + p \rightarrow K^+ + \Xi^0$
- Generated histograms/root files (Monitoring Histograms, ReactionFilter, mcthrown_tree)
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=monitoring_hists foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=ReactionFilter –PReaction1=10_14__8_18 foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=mcthrown_tree foo_smeared.hddm

IMPROVED FIT

- I altered the fit range I was using to improve the fit.
- The results below show that by decreasing the background range, the fit is improved.

CROSS SECTIONS FROM SLAC

- Cross sections were taken from the SLAC neutral kaon scattering paper : Yamartino *et al.*(https://journals.aps.org/prd/a bstract/10.1103/PhysRevD.10.9)
- The total cross sections, in mb, are plotted vs. K_L beam momentum.
- Fitted with Function = A + Be^{-x}

POLARIZATION

- Lambda polarization can be inferred from its decay products.
- Related to the angle the proton momentum vector makes with the reaction normal.
- Reaction normal
 - SLAC : n = $p_{K0} X p_{\pi^+} / |p_{KL}||p_{\pi^+}|$
 - Yamartino et al.(https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.9)
 - BNL : n = p_{K0} X p_{Λ} / |p_{KL}||p_{Λ}|
 - I have added a negative sign to this definition so that the normals have the same orientation when comparing plots.

5

- Bonner et al. (https://doi.org/10.1103/PhysRevD.38.729)
- Polarization
 - $\text{SLAC}: \alpha_{\Lambda} P_{\Lambda} = 3^* p_{\text{pro},\Lambda\text{cm}} \bullet n / |p_{\text{pro},\Lambda\text{cm}}|$
 - $BNL : \alpha_{\Lambda}P_{\Lambda} = 2 (N_{+} N_{-}) / (N_{+} + N_{-})$
 - $N_{+}(N_{-}) = Number \text{ of events with } \cos\theta > 0 \ (\cos\theta < 0)$, and $\cos\theta = p_{pro, \land cm} \cdot n/|p_{pro, \land cm}|$

M. B. C. Scott

- More than ~12% of events have aP = 0 for the thrown particles.
- The top plot shows the results without any cuts.
- The bottom plot shows the same distributions with a thrown aP = 0 cut.

WASHINGTON, DC

Thr : $\alpha_{\Lambda} P_{\Lambda} vs P_{beam}$

25

THROWN AP = 0 : DISTRIBUTIONS

- These events don't seem to be "true" lambda events.
 - Strongly peaked around low beam momenta
 - $-\Lambda$ and π^{-} momenta are essentially zero.
 - Invariant mass is less than 1 GeV

WASHINGTON, DC

AP RESULTS

Rec. and Thr. aP results along with the SLAC experimental results.

- The first column has the SLAC definition, the second the BNL definition, and the last the difference between them.
- The rec. results are consistent across definitions.
- Both the rec and thr results are fairly consistent with the SLAC results.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Backup Slides

