

Backgrounds to $K_L + p \rightarrow K^+ + n$

- (1) $K_L + p \rightarrow \pi^+ + \Sigma^0$
- (2) $n+p \rightarrow K_s(\pi^+\pi^-) + \Sigma^+ + n$ threshold 2.6 GeV/c.
- (3) Beam leak from other halls and reconstruction of $K_L + p \rightarrow K^+ + n$

KLONG

MM(K⁺) from $K_L + p \rightarrow K^+ + n$ at beam momentum (0.35,0.55) GeV/c. Beam leak into Hall D line (left) vs normal beam (right).

- NO structures in Missing Mass of K⁺ !
- At $p_{beam} = 0.45$ GeV/c the "leak" to "beam" ratio = $\sim 120/12 = \sim 10$; we expect lower ~ 2 .
- The ratio of neutron_peak to leak of "neutrons" = $\sim 300/50=6$; expected ratio is of 30.

K_L +p→K⁺+ Ξ^0 at 0.35<p_K<0.55 GeV/c. Missing Mass of K⁺ and e-beam leak from other halls (left) vs normal Hall D beam (right)

• The ratio of neutron_peak to leak of " Ξ^{0} " =~300/75=~4; we expect ~5*4=20, i.e. ~**5% background.**

$K_L + p \rightarrow K^+ + \Xi^0$. Background oscillation caused by beam leak.

• The background part shows oscillations (10% amplitude) due to beam leak.

What to do with beam leak background?

- 1. FLUKA shows that **minum energy of K**_L at LH2 target T=0.1 GeV. => K_L **momentum** $p_K = 0.33 \text{ GeV/c} => \beta_K = p_K / (T+m_K) = 0.33/0.597 = 0.554$ TOF_K=2400[cm]/(30[cm/ns]*0.554)=**144 ns**
 - $TOF_{\gamma} = 2400[cm]/(30[cm/ns]*1.000) = 80 ns$
- 2. The difference TOF_{K} $\text{TOF}_{\gamma} = 64 \text{ ns}$, therefore all **beam** K_L's with p>0.33 GeV/c do **fit into (0,64) ns** interval!
- Provided 128 ns between bunches the following (64,128) ns interval is filled by beam leak only. Therefore this interval may be used to permanently measure /subtract the background .

Conclusion

Final state (FS)	#FS/#K _L / Resol.	#FS/#K _L / Resol.
K _L beam mom.	0.3-0.6 GeV/c	0.5-5.0 GeV/c
$\rightarrow K_{s} + \dots$	53 % / 10 MeV	14 % / 20 MeV
$\rightarrow K_{s}+p$	44 % / 20 MeV	2 % / 25 MeV
\rightarrow K ⁺ +n	50 % / 15 MeV	6 % / 50 MeV

- GlueX CDC is an **ideal detector** at K_{L} beam momentum (0.3, 0.6) GeV/c.
- Overage **reconstruction efficiency** $\sim 50\%$ in this region.
- Advantage of $K_L^+ p \to K_s(\pi^+\pi^-) + p$ is that it has **3 charged particles** of low momenta, hence better **resolution** and **vertex** localisation; good cross check for $K_L^+ p \to K^+ + n$.
- **Beam leak** background **does not create problems** for neutron rec. via MM(K⁺).