- Why have a photon beam during KLF?
 - a) Energy calibrations of calorimeters (need π^{0} -s).
 - Might be doable with neutrons present in the K₁ beam (Mikhail).
 - b) Timing calibration of detectors.
 - Might be doable using "fast" K_{ι} -s.
 - This requires less statistics than energy calibrations do.
- Having a photon beam in the hall is not that easy
 - Some features will need to be implemented into KPT engineering design
 - May require: Primary collimator, Beam Profiler, GlueX AC(?)
 - No space or time for the secondary collimator?
 - The window of opportunity is closing as the KPT drawings are getting finalized
 - A decision needs to be made within a month.
- We need to know the time duration of the calibration portion of the run (Igal)
 - Kinematic distributions of π^0 -s and required mass resolutions in the proposed physics.
 - Calibration procedure requirements to match the physics.
 - Do we need a thinner solid target (hydrogen-rich or nuclear) for this run?
- We need to know the impact on the budget and KPT design&construction schedule, and the estimate
 of the changeover time (Tim)
 - We only might be able to run with photons in the beginning of each run period