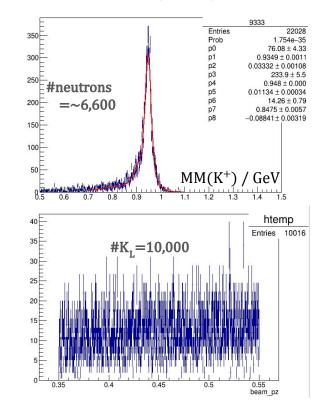
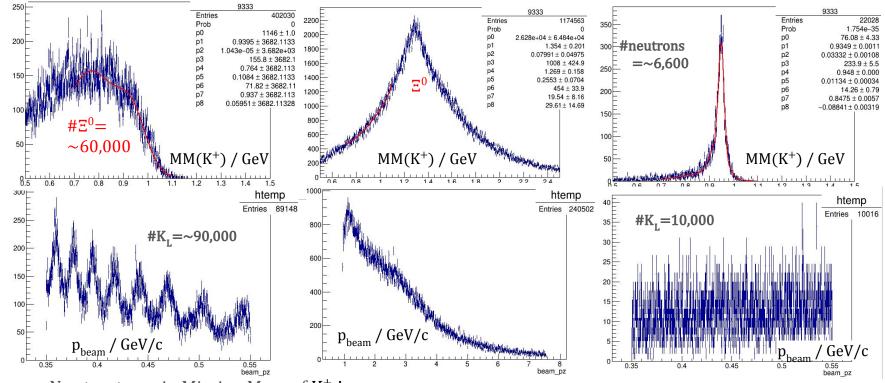

Backgrounds to $K_L + p \rightarrow K^+ + n$


- (1) $K_L + p \rightarrow \pi^+ + \Sigma^0$
- (2) $n+p \rightarrow K_s(\pi^+\pi^-) + \Sigma^+ + n$ threshold 2.6 GeV/c.
- (3) Beam leak from other halls and reconstruction of $K_L + p \rightarrow K^+ + n$

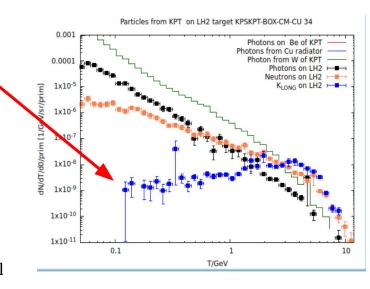
MM(K^+) from $K_L^+ p \to K^+ + n$ at beam momentum (0.35,0.55) GeV/c. Beam leak into Hall D line (left) vs normal beam (right).



- NO structures in Missing Mass of K⁺!
- At $p_{beam} = 0.45$ GeV/c the "leak" to "beam" ratio = $\sim 120/12 = \sim 10$; we expect lower ~ 2 .
- The ratio of neutron_peak to leak of "neutrons" = $\sim 300/50 = 6$; expected ratio is of 30.

$K_L + p \rightarrow K^+ + \Xi^0$ at $0.35 < p_K < 0.55$ GeV/c. Missing Mass of K^+ and e-beam leak from other halls (left) vs normal Hall D beam (right)

- No structures in Missing Mass of K⁺!
- At $p_{heam} = 0.45$ GeV/c the "leak" /"beam" ratio = $\sim 100/10 = \sim 10$; we expect ~ 2 (factor 5).
- The ratio of neutron_peak to leak of " Ξ^0 " =~300/75=~4; we expect ~5*4=20, i.e. ~5% background.


What to do with beam leak background?

- 1. FLUKA shows that minum energy of K $_{L}$ at LH2 target T=0.1 GeV. => K_{L} momentum p_{K} = 0.33 GeV/c
 - $=> \beta_{K} = p_{K} / (T + m_{K}) = 0.33 / 0.597 = 0.554$

 $TOF_{K} = 2400[cm]/(30[cm/ns]*0.554) = 144 ns$

 $TOF_{v} = 2400 [cm]/(30 [cm/ns]*1.000) = 80 \text{ ns}$

- 2. The difference TOF_{K} $TOF_{\gamma} = 64 \text{ ns}$, therefore all **beam** K_{I} 's with p>0.33 GeV/c do **fit into (0,64)** ns interval!
- 3. **Provided 128 ns** between bunches the following (64,128) ns interval is **filled by beam leak** only. Therefore this interval may be used to **permanently measure**/subtract the **background**.

Conclusion

Final state (FS)	#FS/#K _L / Resol.	#FS/#K _L / Resol.
K _L beam mom.	0.3-0.6 GeV/c	0.5-5.0 GeV/c
→K _s +	53 % / 10 MeV	14 % / 20 MeV
$\rightarrow K_s + p$	44 % / 20 MeV	2 % / 25 MeV
→K ⁺ +n	50 % / 15 MeV	6 % / 50 MeV

- GlueX CDC is an **ideal detector** at K_L beam momentum (0.3, 0.6) GeV/c.
- Overage **reconstruction efficiency** $\sim 50\%$ in this region.
- **Advantage** of $K_L^+p \to K_s^-(\pi^+\pi^-)+p$ is that it has **3 charged particles** of low momenta, hence better **resolution** and **vertex** localisation; good cross check for $K_L^+p \to K^++n$.
- **Beam leak** background **does not create problems** for neutron rec. via $MM(K^+)$.