Temperature Calculations with Mathematica

Hovanes Egiyan

Last Weeks Studies with KLCPS64 Model

- Study temperature in the absorber only using Mathematica.
- Check consistency with Tim's calculations with ANSYS
- Tim calculated temperature for KLCPS64 with rectangular grid.
- I calculated temperature for KLCPS64 with cylindrical grid with the same cooling model (cooling holes offcenter by 8 cm in each direction).
- The results for $\mathrm{T}_{\max }=205^{\circ} \mathrm{C}$ match within $5^{\circ} \mathrm{C}$.
- Checked rectangular grid in Mathematica (without cooling holes).
- $\mathrm{T}_{\max }$ seems to be dependent on the mesh size (currently 2 mm).
- My cylindrical grid for now provides better sensitivity ($\times 10$) at the location of the triangular wedge.
- The results for rectangular and cylindrical model in Mathematica match within $15^{\circ} \mathrm{C}$.
- I noticed an x-asymmetry in the solutions for temperature around triangular wedge when solving in cylindrical coordinate system.
- This is related to how 2π periodic boundary conditions are imposed in the cylindrical coordinates.
- It apparently can cause about $10^{\circ} \mathrm{C}$ difference in $\mathrm{T}_{\max }$, based on my tests.
- After fixing the asymmetry $\mathrm{T}_{\text {max }}$ seems to go up by $10^{\circ} \mathrm{C}$
- I will switch to $\phi \in[-\pi / 2,3 \pi / 2]$ range and stitch the solution at those limits instead of $\phi \in[-\pi,+\pi]$.
- It would be great if Pavel can provide cylindrical grid with those limits.

Temperatures from Pavel's Tests

- I looked at some of the tests that Pavel did with KLCPS64 model to estimate the temperature in the absorber.
- $\pm 10 \%$ B-field and $\sigma^{(x, y)}$ beam widths are kind of extreme conditions that are highly unlikely to occur during running.
- Used water temperature $T_{\text {water }}=40^{\circ} \mathrm{C}$ with cooling holes offset at 7 cm in each direction.
- All tests were solved using similar conditions and parameters for consistency.
- None of the tests produces high maximum temperature or requires high temperature at the water boundary.
- The highest $\mathrm{T}_{\text {max }}$ so far happens with -1 mrad angle in Y as well as $110 \% \mathrm{~B}$-field, when the beam hits the forward corner of the absorber.
- The current vertical beam position may not be optimal for the B-field.
- Can be addressed at a later stage when B-field is better defined.
- There are other tests that Pavel did that I have not checked yet.

Test Name	Hot Spot Location Section	$\mathrm{R}_{\max }(\mathrm{cm})$	$\phi_{\max }(\mathrm{deg})$	$\mathrm{Z}_{\text {max }}(\mathrm{cm})$	$\mathrm{T}_{\text {max }}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {holes }}\left({ }^{\circ} \mathrm{C}\right)$	Comment
Nominal ($\left.\sigma^{(x, y)}{ }_{\text {beam }}=1 \mathrm{~mm}\right)$	Triangular	0.3	70	8	240 ± 25	55	x-asymmetry
$\sigma^{(x, y)}{ }_{\text {beam }}=100 \mu \mathrm{~m}$	Triangular	0.0	N/A	44	240 ± 25	65	No asymmetry
90\% B-field	Rectangular	0.2	90	59	230 ± 25	60	x-asymmetry
110\% B-field	Triangular	0.2	70	8	305 ± 25	70	x-asymmetry
-1mm shift in Y	Triangular	0.2	70	8	255 ± 25	65	x-asymmetry
+1mm shift in Y	Rectangular	0.1	90	57	180 ± 25	60	x-asymmetry
-1mrad angle in Y	Triangular	0.15	70	8	335 ± 25	70	x-asymmetry
+1mrad angle in Y	Rectangular	0.2	90	59	240 ± 25	60	x-asymmetry

