KLF for Hadron Spectroscopy

Igor Strakovsky

The George Washington University (for KLF Collaboration)

- Aims of KLF Project.
- Hyperon Spectroscopy.
- Strange *Meson* Spectroscopy.
- A Bit of *History*.
- KLF Beamline & Hardware.
- KLF Time Requested.

*Supported by 🛭

- Summary.
- Impact to Study Early Universe.

IWHSS-2020, Trieste, Italy, November 2020

Igor Strakovsky 1

DE-SC0016583

arXiv:2008.08215 [nucl-ex]

- project has firmly to establish secondary K_1 beam line at Jefferson Lab with *flux* of *three order of magnitude higher* than **SLAC** had, for scattering experiments on both *proton* & *neutron* (*first* time !) targets in order.
- To determine differential cross sections & self-polarization of strange hyperons with GlueX detector to enable precise *PWA* in order to determine all *resonances* up to 2500 MeV in spectra of Λ^* , Σ^* , Ξ^* , & Ω^* .
- In addition, we intend to do strange meson spectroscopy by studies of π -K interaction to locate the *pole* positions in I = 1/2 & 3/2 channels.

& BROOKHAVEN has link to ion-ion high energy facilities as & will allow understand formation of our world in several microseconds after Big Bang.

Four International Workshops Supported KLF Program

KL2016

[60 people from 10 countries, 30 talks] <u>https://www.jlab.org/conferences/kl2016/</u> OC: M. Amaryan, E. Chudakov, C. Meyer, M. Pennington, J. Ritman, & I. Strakovsky

YSTAR2016

[71 people from 11 countries, 27 talks] <u>https://www.jlab.org/conferences/YSTAR2016/</u> OC: M. Amaryan, E. Chudakov, K. Rajagopal, C. Ratti, J. Ritman, & I. Strakovsky

HIPS2017

[43 people from 4 countries, 19 talks] <u>https://www.jlab.org/conferences/HIPS2017/</u> OC: T. Horn, C. Keppel, C. Munoz-Camacho, & I. Strakovsky

PKI2018

[48 people from 9 countries, 27 talks] <u>http://www.jlab.org/conferences/pki2018/</u> OC: M. Amaryan, U.-G. Meissner, C. Meyer, J. Ritman, & I. Strakovsky

In total: 222 participants & 103 talks

IWHSS-2020, Trieste, Italy, November 2020

Igor Strakovsky

Baryon Multiplets of Eight-fold Way

 Δ^{-}

Σ)*

1/2

 Ξ^{*-}

 Σ^{*+}

Spin 1/2 baryon octet: N^* , Λ^* , Σ^* , Ξ^* Spin 3/2 baryon decuplet: Δ^* , Σ^* , Ξ^* , Ω^*

Resonance	QM & LQCD	Observed	particle data
N*	64	16	
Δ^*	22	10	
Λ^*	17	14	^
Σ*	43	10	
Ξ*	42	6	
$\mathbf{\Omega}^{*}$	24	2	

• One needs to *complete* SU(3)_F multiplets.

IWHSS-2020, Trieste, Italy, November 2020

A bit of History for Hyperons

First hyperon, A(1116)1/2+, was discovered during study of cosmic-ray interactions.
It led to discovery of strange quark.

 Pole position in complex energy plane for hyperons has began to be studied only recently, first of all for Λ(1520)3/2⁻.

IWHSS-2020, Trieste, Italy, November 2020

What Can Be Learned with $K_{\mathcal{L}}$ Beam?

$\mathcal{K}_{\mathcal{L}} p \rightarrow \pi^+ \Sigma^0 \& \pi^0 \Sigma^+$

HISKP

Isospin Amplitudes:

$$|A(K^{-}p)|^{2} = \frac{1}{2}(|A_{1}|^{2} + |A_{0}|^{2} + 2Re(A_{1}A_{0}^{*}))$$
$$|A(K^{0}n)|^{2} = \frac{1}{2}(|A_{1}|^{2} + |A_{0}|^{2} - 2Re(A_{1}A_{0}^{*}))$$
$$|A(K^{0}p)|^{2} = |A_{1}|^{2}.$$

World K—long Data — Ground for Hyperon Phenomenology W = 1.45 – 5.05 GeV SAID: http://gwdac.phys.gwu.edu/

Limited number of K_L induced measurements (1961 – 1982) 2426 $d\sigma/d\Omega$, 348 σ^{tot} , & 115 P observables do not allow today to *feel comfortable* with *Hyperon Spectroscopy* results.

- Limited number of K_L observables in *hyperon spectroscopy* at present poorly constrain phenomenological analyses.
- Overall systematics of previous experiments varies between
 15% & 35%.
 Energy binning is much broader than hyperon widths.
- There were

 no measurements using
 polarized target.
 It means that there are
 no *double polarized* observables which
 are critical for
 complete experiment program.
- We are not aware of any data on *neutron* target.

PWA Formalism

• *Differential cross section* & *polarization* for *K*_L*p* scattering are given by

$$\frac{d\sigma}{d\Omega} = \lambda^2 (|f|^2 + |g|^2)$$
$$P\frac{d\sigma}{d\Omega} = 2\lambda^2 \text{Im}(fg^*)$$

 $\lambda = \hbar/k$ & k is momentum of incoming kaon in CM.

 $f(W, \theta) \otimes g(W, \theta)$ are *non-spin_flip* & *spin_flip* amplitudes at $W \otimes \theta$.

Samples of PWA Results for Current DB

 Polarized measurements. are tolerable for any PWA solutions.

H. Zhang *et al* Phys Rev C **88**, 035204 (2013) H. Zhang *et al* Phys Rev C **88**, 035205 (2013)

Impact Proposed Data on A PWA

2806

Systematics

• χ^2 changes if *resonance* is out.

Igor Strakovsky 15

Theory for "Neutron" Target Measurements

- There are 6 different models.
- *Pole* positions of $\Lambda(1405)$ in chiral unitary approaches.
- Each symbol represents position of 1st (black) & 2nd (red) pole in each model.

Summary of Hyperon Spectroscopy

- We showed that sensitivity with 100 d of running will allow to discovery many hyperons with good precision.
- Why should it be done with KL beam?

This is only realizable way to observe *s*-channel resonances having all momenta of *KL* at once.

- Why should it be done at Jefferson Lab Because nowhere else in existing facilities this can be done.
- Why should we care that there are dozens of missing states ?

...The new capabilities of the 12-GeV era facilitate a detailed study of baryons containing two and three strange quarks. Knowledge of the spectrum of these states will further enhance our understanding of the manifestation of QCD in the three-quark arena. 2015 Long Range Plan for Nuclear Science

Proposed Measurements

Scalar Meson Nonet

- Four states called K.
- Still need further confirmation.
- Illows determination of all *four* states.

IWHSS-2020, Trieste, Italy, November 2020

Phenomenology of q^2 -*bar*- q^2

R.J. Jaffe, Phys Rev D **15**, 267 (1977) arXiv: 0001123 [hep-ph]

Inverted mass hierarchy tetraquarks

Ordinary meson states

Summary of $K\pi$ Spectroscopy

- W will have very significant *impact* on our knowledge on $K\pi$ scattering amplitudes.
- It will certainly improve still conflictive determination of *heavy K*'s parameters*.
- It will help to settle tension between phenomenological determination of scattering lengths from data vs ChPT & LQCD.
- For *K*(800)*, it will reduce: *uncertainties* in *mass* by factor of *two* & uncertainty in *width* by factor of *five*.
- It will help to clarify debated of its *existence*, &, therefore, long standing problem of existence of *scalar* meson *nonet*.

A bit of History

VOLUME 138, NUMBER 5B

7 JUNE 196

Photoproduction of Neutral K Mesons^{*}

S. D. DRELL AND M. JACOB[†]

CP-violation (1964) Hot topic!

First paper on subject Stanford Linear Accelerator Center, Stanford University, Stanford, California (Received 6 January 1965)

Photoproduction of a neutral K-meson beam at high energies from hydrogen is computed in terms of a K* vector-meson exchange mechanism corrected for final-state interactions. The results are very encouraging for the intensity of high-energy K2 beams at high-energy electron accelerators. A typical magnitude is 20 µb/sr for a lower limit of the K⁰ photoproduction differential cross section, at a laboratory peak angle of 2°, for 15-BeV incident photons.

	Y(k) WWW	κ°(ω,q)
FIG. 1. K* exchange in photoproduction.		< *
[Not dominant]	ρ (Ε, , ρ ₁)	Σ ⁺ (E ₂ , ρ ₂)

Our motivation in carrying out this calculation is to emphasize the strong suggestion that an intense "healthy" K2 beam will emerge from high-energy electron accelerators (SLAC in particular) and will be available for detailed experimental studies.

FIG. 3. Center-of-mass differential cross section at 10 BeV. Curve (1) gives the Born approximation. Curve (2) is obtained after subtraction of the $j = \frac{1}{2}$ partial wave. Curves (3) and (4) are respectively obtained after the $j = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$, and all partial wave have been corrected for absorption in final state. The results a shown as directly obtained from and drawn by the computer.

Courtesy of Mike Albrow, KL2016

IWHSS-2020, Trieste, Italy, November 2020

A bit of History

The possibility that useful K_L beam could be made at electron synchrotron by photoproduction was being considered, & 1965 prediction for SLAC by Drell & Jacob was optimistic.

PHYSICAL REVIEW	VOLUME 156, NUMBER 5	25 APRI, 1967
	Photoproduction of Strange Particles*	\smile
	CAMBRIDGE BUBBLE CHAMBER GROUP† Brown University, Providence, Rhode Island, U. S. A., Cambridge Electron Accelerator, Cambridge, Massachusetts, U. S. A., Harvard University, Cambridge, Massachusetts, U. S. A., Massachusetts Institute of Technology, Cambridge, Massachusetts, U. S. A., University of Padova, Padova, Italy, and The Weizmann Institute of Science, Rehovoth, Israel. (Received 2 Neurophys 1066)	

A bit of History

Igor Strakovsky 26

- Accelerator: 2.2 GeV/pass
- Halls A,B,C: e[−] 1-5 passes ≤11 GeV
- Hall D: e^- 5.5 passes 12 GeV $\Rightarrow \gamma$ -beam
- Runs 2017-2018: 5.5 passes 11.7 GeV

Hall D Beam Line for K-longs

• Superior *CEBAF* electron beam will enable flux on order of 10⁴ KL/sec, . . . which exceeds flux of that previously attained @ *SLAC* by *three orders* of magnitude.

Expected Energy-Resolution

• Mean lifetime of K^- is 12.38 ns ($c\tau = 3.7$ m) whereas mean lifetime of K_L is 51.16 ns ($c\tau = 15.3$ m).

Thus, it is possible to perform measurements of $K_{L}p$ scattering

at *lower energies* than *K⁻p* scattering due to high beam flux.

• Momentum measured with *TOF* between *SC* (surrounded LH_2/LD_2) & *RF* from *CEBAF*.

Expected Particle Identification with GlueX

• dE/dx for pK_s .

IWHSS-2020, Trieste, Italy, November 2020

Expected statistics for differential cross sections of different reactions with LH₂ & below W = 3.0 GeV for 100 days of beam time:

- There are no data on ``neutron" targets &, for this reason, it is hard to make realistic estimate of statistics for K_Ln reactions.
 If we assume similar statistics as on proton target, full program will be completed after running 100 days with LH₂ & 100 days with LD₂ targets.
- Expected systematics is 10% or less.

E12-12-19-001

KLF Collaboration Map

- Our goal is
 - To establish KL Facility @ Jefferson Lab
 - To do measurements which bring new physics.

 Jefferson Lab *Strangeness* in nuclear & hadronic physics. *It may extract very many missing strange states*.
 To complete SU(3)_F multiplets, one needs no less than
 17 Λ*, 43 Σ*, 42 Ξ*, & 24 Ω*

- Discovering of ``missing" hyperon states would assist in advance our understanding of formation of baryons from quarks & gluons microseconds after Big Bang.
- In *Strange Meson Spectroscopy* PWA will allow to determine excited *K** states including scalar *K**(700) states.

PAC48 REPORT Jefferson Lab 48th PROGRAM ADVISORY COMMITTEE (PAC 48)

Summary: The future K_L facility will add a new physics reach to JLab, and the PAC is looking forward to see the idea being materialized, in conjunction with the plans for Hall D as spelled out in the 2019 White Paper. The collaboration should now devote all its energy to turn this challenging project into an experimental facility and in parallel prepare for a successful data analysis.

History of the Universe

The omission of any

 missing hyperon states"
 in *Standard Model* will
 negatively impact our
 understanding of
 QCD freeze-out in
 heavy-ion & hadron
 collisions,
 hadron spectroscopy, &
 thermodynamics of
 early Universe.

 For that reason, advancing our understanding of formation of *baryons* from *quarks* & *gluons* requires new experiments to search for any *missing hyperon* resonances.

Thermodynamics @ Freeze-Out

 Recent studies that compare LQCD calculations of thermodynamic, statistical Hadron Resonance Gas models, & ratios between measured yields of different hadron species in heavy ion collisions provide indirect evidence for presence of "missing" resonances in all of these contexts.

Igor Strakovsky 40

Courtesy of Claudia Ratti, YSTAR2016

Sep 2020

14

[nucl-ex]

arXiv:2008.08215v2

Proposal for JLab PAC48

Strange Hadron Spectroscopy with Secondary K_L Beam in Hall D

Experimental Support:

Holly Szumila-Vance¹⁹, Daniel Watts⁶³, Lawrence Weinstein⁴³, Timothy Whitlatch⁴⁹, Nilanga Wickramaarachchi⁴³, Bogdan Wojtsekhowski⁴⁹, Nicholas Zachariou⁶³, Jonathan Zarling⁵³, Jixie Zhang⁶¹

Theoretical Support:

Alexey Anisovich^{5,44}, Alexei Bazavov³⁸, Rene Bellwied²¹, Veronique Bernard⁴², Gilberto Colangelo³, Aleš Cieplý⁴⁶, Michael Döring¹⁹, Ali Eskanderian¹⁹, Jose Goity^{20,49}, Helmut Haberzettl¹⁹, Mirza Hadžimehmedović⁵⁵, Robert Jaffe³⁶, Boris Kopeliovich⁵⁴, Heinrich Leutvyler³, Maxim Mai¹⁹, Terry Mart⁶⁵, Maxim Matveev⁴⁴, Ulf-G. Meißner^{5,29}, Colin Morningstar⁹, Bachir Moussallam⁴², Kanzo Nakayama⁵⁸, Wolfgang Ochs³⁷, Youngseok Oh³¹, Rifat Omerovic⁵⁵, Hedim Osmanović⁵⁵, Eulogio Oset⁶², Antimo Palano⁶⁴, Jose Peláez³⁴, Alessandro Pilloni^{66,67}, Maxim Polyakov⁴⁸, David Richards⁴⁹, Arkaitz Rodas^{49,56}, Dan-Olof Riska¹², Jacobo Ruiz de Elvira³, Hui-Young Ryu⁴⁵, Elena Santopinto²³, Andrey Sarantsev^{5,44}, Jugoslav Stahov⁵⁵, Alfred Švarc⁴⁷, Adam Szczepaniak^{22,49}, Ronald Workman¹⁹, Bing-Song Zou⁴

IWHSS-2020, Trieste, Italy, November 2020

