Hovanes Egiyan

TEMPERATURE EVALUATION FOR CPS MODELS

Presented method

- The goal of this method is to obtain temperature distribution estimates for the CPS core using a simpler method than full *ANSYS*, in order to verify *ANSYS* results.
 - Only concentrate on the copper core area to get 3D solutions for the equations in a uniform medium.
- Use Poisson's equation with boundary condition to determine the Tdistribution.
 - Use finely binned data from FLUKA simulations by Vitaly and Pavel.
 - The solutions for the equations are assumed to be time-independent.
- Solve the equations using *Mathematica* software.
 - JLAB owns license for CUE Linux machines.
 - Can solve Poisson's equation in both Cartesian, Spherical and Cylindrical coordinates.
 - Small details like small 2mm cuts e.t.c. are ignored in geometry.
 - Assumes fixed temperature for the boundary with the cooling water and calculated temperature rise with respect to that boundary temperature.
 - Water flow is assumed to be sufficient for cooling to T₀ value.
- I use $T_0 = 70$ °C water boundary temperature in the copper.
 - Tim uses 40 °C water temperature in ANSYS.

used $k = 385 \frac{W}{Km}$ herer for copper thermal conductivity $-\nabla^{2} T(x,y,z) = \frac{1}{k} q(x,y,z)$ $-\nabla^{2} T(r,\phi,z) = \frac{1}{k} q(r,\phi,z)$

Input from Vitaly's model

-2

0.00100

FLUKA Model file CPSKPTLEAD1712narrGUNvacTRP_020323_21 from February 2023.

0.10000

0.01000

• Tim presented his results on February 23 meeting.

-2

0 -1

x (cm)

1

0.01000

0.00001

10-8

- Pretty uniform in Z power deposition in the copper core.
- ~2 KW/cm³ maximum power deposition density.
- Total power 25.6 KW in 53x27x4.4 cm³ volume of copper.

Results for Vitaly's Model

y (cm)

z = 95 cm 10 -5 - 10 90 100 110 120 130 z (cm) 100 125 150 175 200 75 $T(^{o}C)$ y = 0 cmy (cm)

 $T(^{o}C)$

- 120 130
 - -2 -1 Max temperature is about $T_{max} \approx 205 \ ^{\circ}C$.

195

190

x = 0 cm

- Temperature at the horizontal edges could be as high as 180 °C.
- Tim is getting 255 ⁰C or 285 ⁰C from **ANSYS** for the same file even though he assumes T_{water} ≈40 ⁰C.
 - Water-to-copper heat transfer is properly taken into account in ANSYS.

150

 $T(^{o}C)$

0 x (cm)

Conceptual Design Update: CPS Shorter by ~50%

Pavel's Model

- Presented by Pavel on December 22, 2022 as KLCPS44.
- I used Pavel's fine-granulated data from KLCPS55 model.

Power deposition along the CPS core

Power density around the tip of the wedge From Pavel

- There are two hot spots at z=45cm and z=55cm.
- Maximum temperature is about $T_{max} \approx 195$ °C.
 - Pavel estimated $\Delta T \approx 105$ °C for the temperature rise. With water boundary temperature T₀ =70 °C, he would get T_{max} ≈ 175 °C.
- Although the power deposition density is high, the temperature at the hot spots is still well under 300 $^{\circ}\mathrm{C}$

r = 0 cm, ϕ =-4 $\pi/3$ z (cm) 80

No hot outer edge seen for this

Good for the lead shielding safety.

model's copper core.

Conclusions and Outlook

- Temperature distributions in copper core has been calculated for Vitaly's model.
 - Temperature is closer to what Tim showed in September of 2022, T_{max} ≈205 °C (not sure what T_{water} was then) than to what he found in February T_{max} ≈ 250 °C from exactly the same file but using T_{water} ≈40 °C.
 - The difference between these calculations and **ANSYS** could be due to :
 - a) Temperature gradient at the water-copper boundary that is taken into account in ANSYS,
 - b) Unoptimized mesh for geometry,
 - c) Unoptimized mesh size or low polynomial order for FLUKA data interpolation in Mathematica,
 - d) Water hole positions in the copper core models need to be the same,
 - e) Absorbed power (29KW shown by Tim vs 26KW shown by Hovanes),
 - I can work with Tim to identify the source of differences.
- Temperature distribution in copper core has been calculated for Pavel's model.
 - Temperature maximum of T_{max} ≈195 ⁰C approximately matches what Pavel estimated assuming cylindrically symmetric model.
 - It would be interesting to see if **ANSYS** solution has $T_{max} \approx 250$ °C for this file as well.
 - It is highly likely that this model will also provide acceptable temperature distribution for the KLF CPS.
- Both models provide copper core temperatures well under T_{max}≈300 ⁰C using these colutions.
- I need to try different mesh sizes
 - Using large mesh size is memory costly, a better computer is needed.
- This method will provide a quick method to check the temperature inside the copper core in addition to **ANSYS** calculations by Tim.
- I can work with Vitaly and Pavel to help quickly compare temperature distributions for different options of CPS and for electron beam parameters .