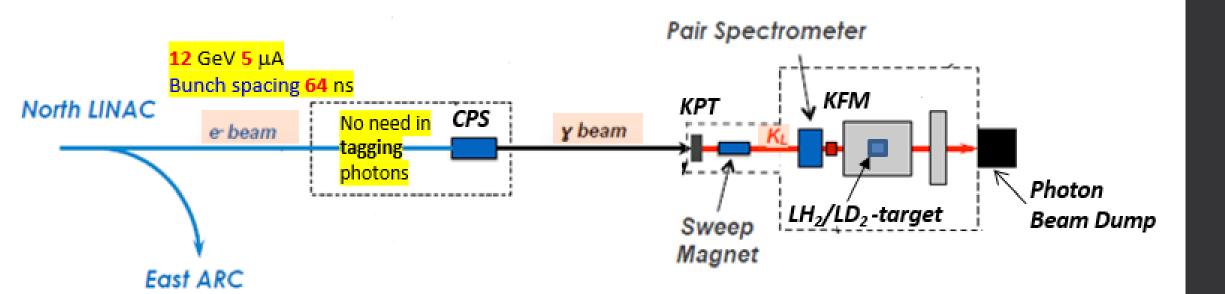


Conceptual Design of Compact Photon Source for KLF

Hovanes Egiyan


Pavel Degtiarenko

Overview


- > Requirements for CPS
- Model Description
- Photon Beam from CPS
- Radiation Environment
- > Temperature in CPS absorber
- Electron Beam Requirements for CPS
- Summary

Introduction

- KLF experiment needs to produce high intensity photon beam for KPT.
- > CPS stands for Compact Photon Source; it has been proposed as the photon source.
- > The only possible location for such a source is the Tagger Hall.
- > CPS beamline will require major modifications to GlueX photon beamline.

5

Review Charge Items

- Is there any R&D needed to be done prior to start the construction of the Klong Facility?
- ➤ What is the status of the Compact Photon Source (CPS)? Specifically:
 - a) the conceptual design
 - b) the evaluation of the produced radiation. In particular, the following points should be discussed:
 - 1. the approximations made in the Monte Carlo simulations and which code has been used;
 - 2. the energy deposition and the absorber temperature;
 - 3. the prompt dose and activation around the CPS and the Tagger Hall;
 - 4. the magnet performance and its coils lifetime;
 - 5. the water-cooling system and possible contaminations.
- Will civil constructions be needed to contain the radiation in the Tagger Hall?
- What will the photon beam quality be?
- What are the requirements of the electron beam on the CPS?
- What is the decommissioning plans for the K-Long Facility (CPS, KPT,....) and the activated components? A brief outline is sufficient.

/

ν,

/

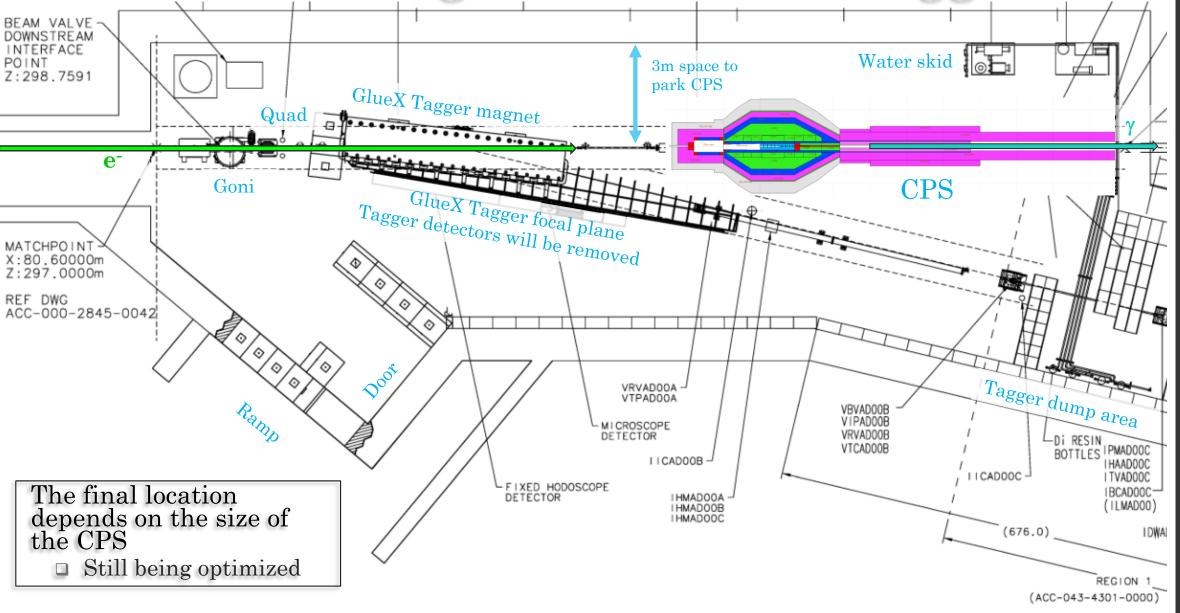
(Tim's talk)

Not needed

1

CPS Requirements

- \triangleright Intense photon flux of $\Phi_{\gamma} > 10^{12}$ photons per second with 1.5 GeV $< E_{\gamma} < 12$ GeV .
- ➤ Photon beam spot size at KPT with 2 · FWHM < 6cm to make full use of KPT size.
- > Radiation environment in the Tagger Hall similar or better than what GlueX would get with 5μA electron beam on nominal GlueX diamond radiator.
 - □ Prompt dose rate equivalent of ~20 rem/h.
 - □ Activation does rate <5 mrem/h after 10000 hours of operations and 1 hour of cool-down time.
 - □ RadCon limits <1 mrem/h outside of the Tagger Hall.
- \triangleright Cooling system design that is sufficient to handle \sim 54 kW power delivered to CPS.
 - □ It will need to be closed-circuit system to avoid activation/contamination.
- > GlueX beamline should be restored relatively quickly without disassembly of CPS.
 - □ GlueX photon beamline is wider than CPS beam channel and is under vacuum.
 - □ We decided to build a movable platform to move CPS beam-left.
 - □ There is sufficient space in the tagger hall for the current CPS design.


Software

- FLUKA 2021.2.9
 - CPS design
 - □ Prompt radiation levels
 - Activation levels
 - Accumulated doses
 - Power deposition in the materials
- > OPERA 18R2
 - Magnet prototyping
 - Magnetic field calculations
- > ANSYS Workbench 2022 R2
 - Thermal analysis
 - Stress and deformation analysis
- ➤ Wolfram Mathematica 13.1.0
 - Thermal analysis

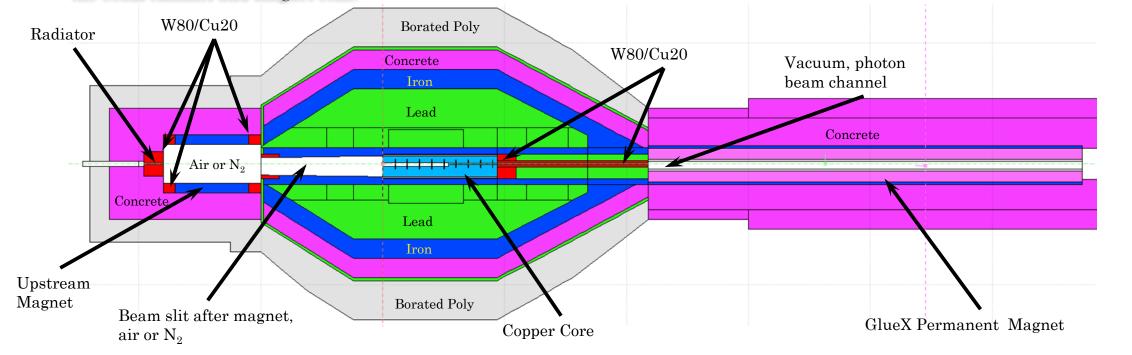
CPS Positioning in the Hall D Tagger

CPS Model

O

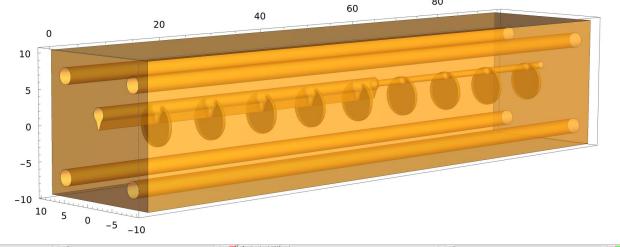
Development of the Design

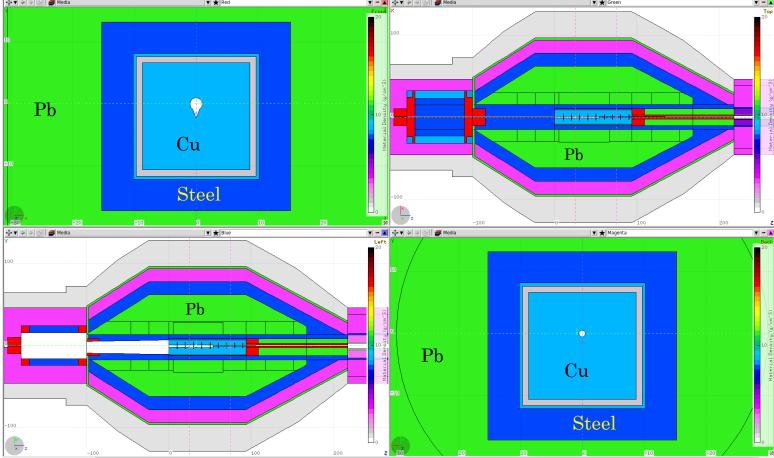
- We started will Hall C version of the CPS.
 - □ Very compact design
 - o Small footprint in the hall.
 - o The radiator, magnet, and the absorber are in the same region.
 - o High power deposition densities leading to high temperatures in the core.
 - Requires a magnet with high magnetic field B > 3 Tesla.
 - □ Hall C design costs \$2M or more mainly due to the use of tungsten as shielding material.
- Considered two different models with lower magnet field during last year.
 - □ Vitaly Baturin developed a model in the summer of 2022.
 - □ Pavel Degtiarenko proposed another model in the fall of 2022.
 - □ After studying both models, we chose one for further optimization and engineering design.
- > Currently we are in process of optimizing the conceptual design.
- > People involved in CPS design work:
 - Physicists: V. Baturin, P. Degtiarenko, H. Egiyan
 - □ Engineers: T. Whitlatch
 - □ We may recruit a mechanical engineer to work of engineering design in the fall.



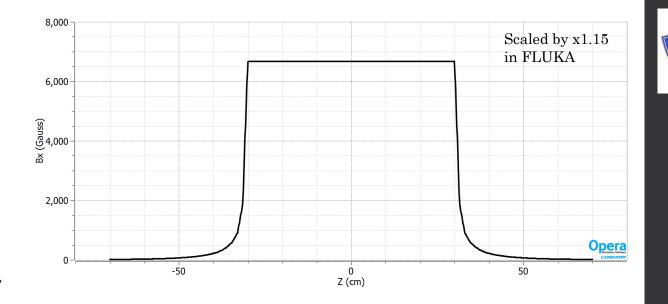
FACILITY

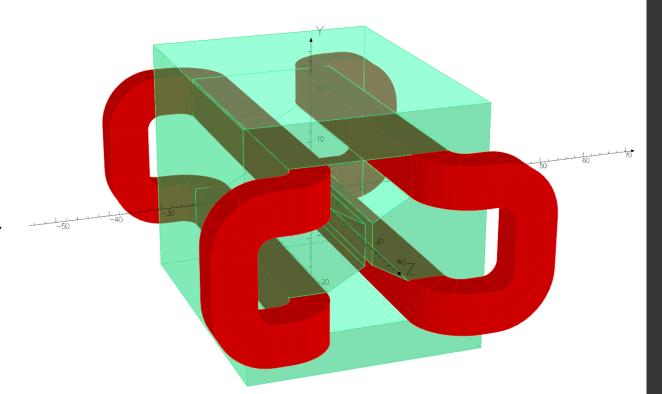
Hall D CPS Model


- Magnet and the absorber are separated by 1 meter.
 - No heat load on the magnet poles and coils from the core.
 - □ Low radiation exposure to the magnet.
- Clean-up magnet downstream for charged particles.
 - Utilize the existing permanent magnet used in GlueX beamline.
- > No tungsten is used in the CPS shielding.
 - □ We save cost by using lead instead.
 - □ Small amount of a tungsten-copper mix is used for shielding the beam channel and magnet coils.

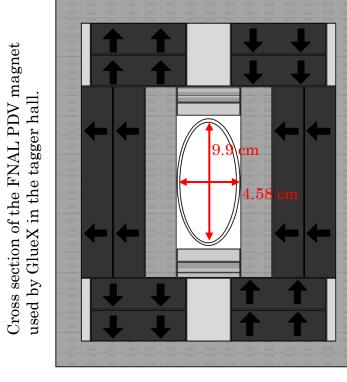

- Total estimated weight of CPS is approximately 76 metric tons.
 - Includes downstream beamline shielding.
 - Movable platform will add more weight.
 - □ Tagger Hall should easily handle CPS weighing 100 tons.
- ➤ Estimated cost of the current design is ~\$1M for CPS
 - □ Upstream beamline instrumentation will be extra.
- > Tim Whitlatch will discuss engineering and cost related aspects in detail.

CPS Absorber


- Copper core with dimensions of 20cm x 20cm x 94cm.
 - To absorb and dissipate the power.
 - Copper is not ferromagnetic and is a very good heat conductor.
- Varying size beam channel to trap the secondary particles from the electromagnetic shower.
 - Wider cavity upstream for trapping electrons and EM shower remnants.
 - □ Narrow conical channel with diameter ~1cm for outgoing photons.
- Cooling channels for water flow capable of evacuating ~54 kW power.
- Copper absorber is surrounded by air, steel, and W/Cu mix.
 - No contact with lead.

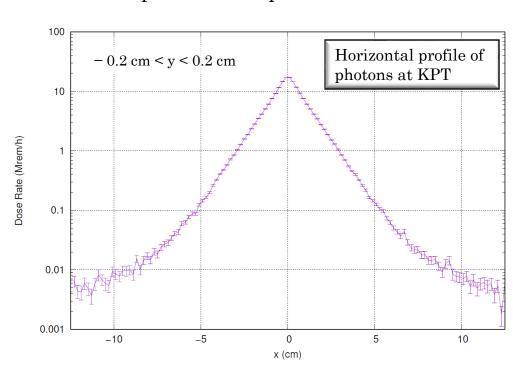


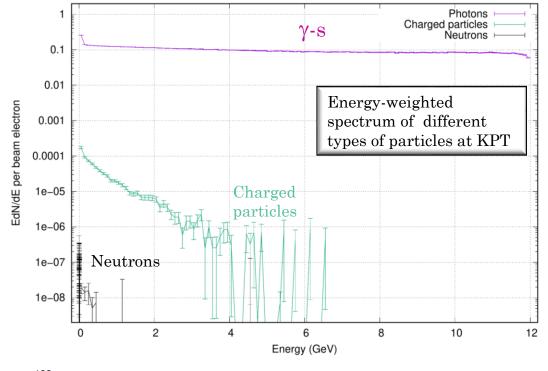
Upstream Magnet

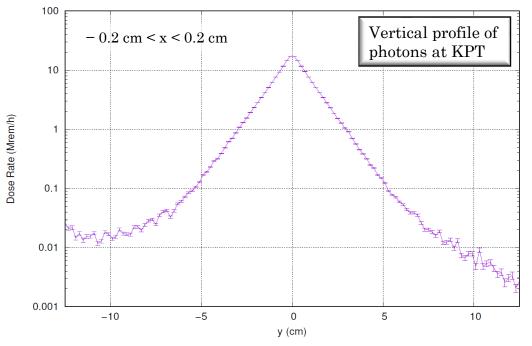

- ➤ Current CPS design requires ~0.48 T·m magnetic field in the x-direction.
- > We developed a draft model of the magnet.
 - Magnet has 60 cm long coils.
 - Bedstead shape of coils for less radiation exposure.
 - □ The closest distance from coils to the beam center is ~11cm.
- The gap should be on the order 1 cm or more to avoid interaction with beam tails and halo.
 - □ Current design assumes 1.4 cm gap.
- Iron yoke with 8 cm thickness.
 - □ Total length of the yoke is 60cm
 - □ The transverse size of the yoke is 46cm x 48 cm.
- > Chamfered iron poles.
- > We used OPERA to calculate the field in the model.
 - The model can provide a dipole field of 0.67 T at 67 A/cm² current density in the coils.
 - Should be able to use Tagger Magnet power supply.
 - ☐ The field in the yoke is far from saturation point.
 - □ Field map is used in FLUKA simulations, scaled by a factor x1.15.

Downstream Magnet

- GlueX uses a 140" long permanent magnet from FNAL beamline to prevent electrons from leaking into the main hall.
 - Electron beam is interlocked to tagger magnet current at the power supply.
 - Leaks are only possible for short bursts when the tagger magnet trips.
 - KLF still needs it to prevent electron from accidentally penetrating to the hall.
- The magnetic material is made of strontium ferrite.
 - Can handle over 10⁷ Gy radiation dose, according to the specs.
- Provides $\int B \cdot dL = 0.822 \text{ T} \cdot \text{m}$ field integral.
 - The exact field of this magnet is not important for CPS itself.
 - We use it to remove the charged particles from the photon beamline.

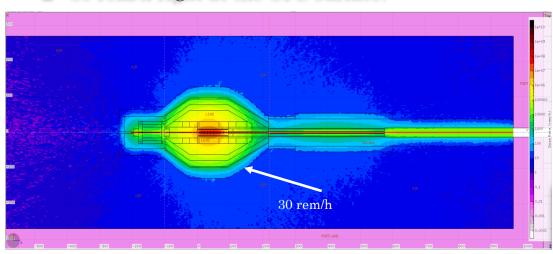


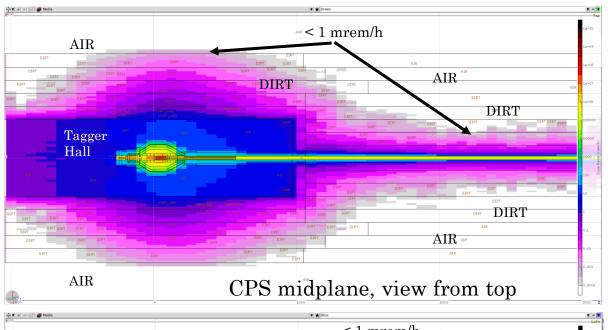


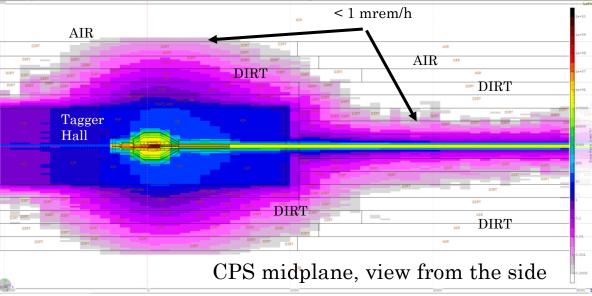


Photon Beam

- We used FLUKA to estimate the beam profile at KPT.
- Clean photon beam profile with $\sigma_{\nu} \approx 1.5$ cm width.
 - The width is dominated by multiple scattering in the 10% radiator.
 - Vertical distribution has a slight asymmetry (on 0.1% level) favoring negative y-s.
- Charged particle and neutron rates from CPS measured at the KPT location is expected to be very small compared to the photon flux.

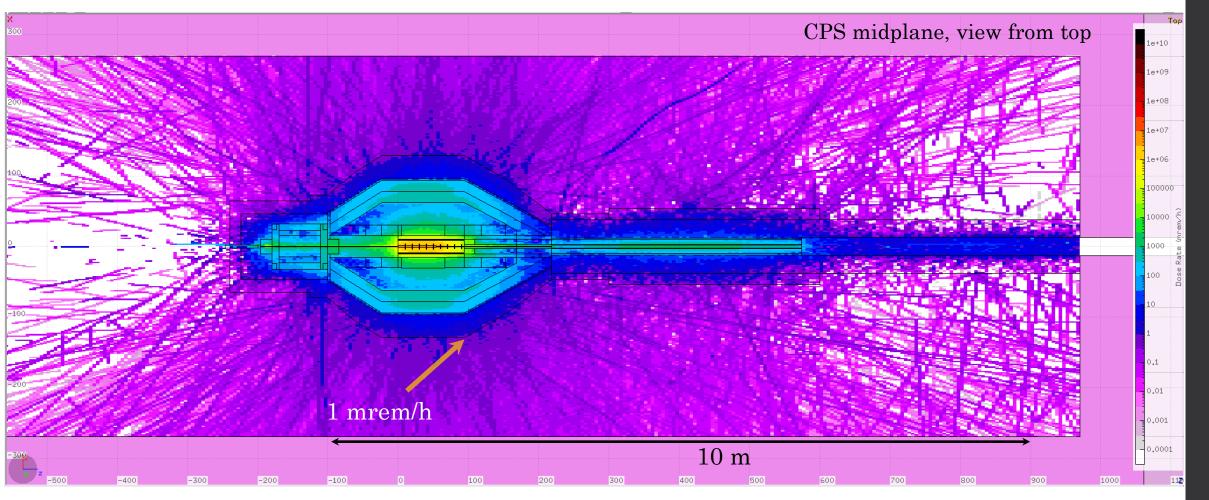


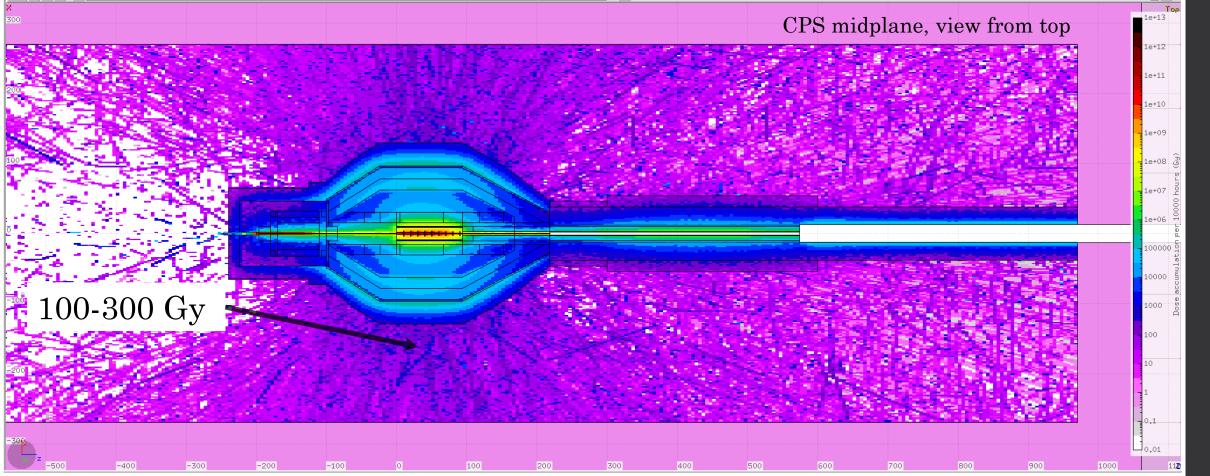



Radiation Environment

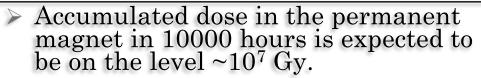
Prompt Dose Rates

- We estimated the prompt dose rates around the Tagger Hall.
 - More detailed simulation may need to be done.
- > The results show that the rates on the surface of the berm will be below 1 mrem/hour.
 - No civil construction will be needed around Tagger Hall to contain radiation.
- The prompt dose rate around the 10" beam pipe between Tagger Hall and Collimator Cave above the dirt is negligible.
- ▶ Prompt dose rate inside Tagger Hall around CPS is ~20 rem/h.
 - □ 30 rem/h right at the CPS surface.

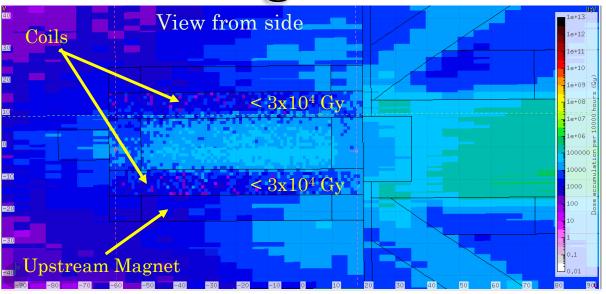


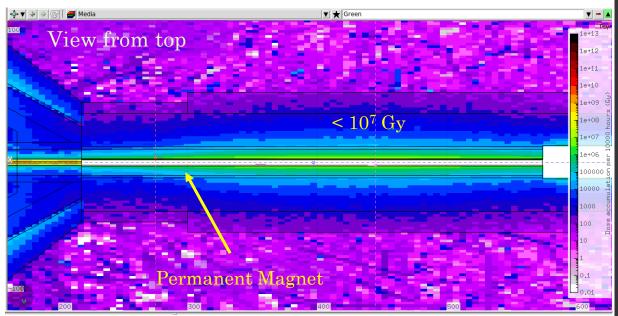

Activation Dose Rates

- > We evaluated activation dose rate after 10000 hours of continuous operations and 1 hour cool-off time.
- ➤ The rates outside of CPS are expected to be <1 mrem/h, that is well within JLAB limits.

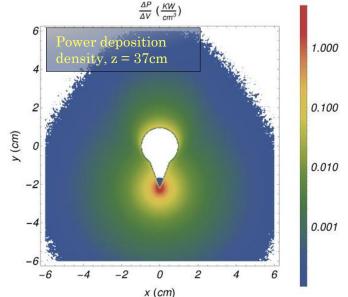

Accumulated Dose in 10000 hours

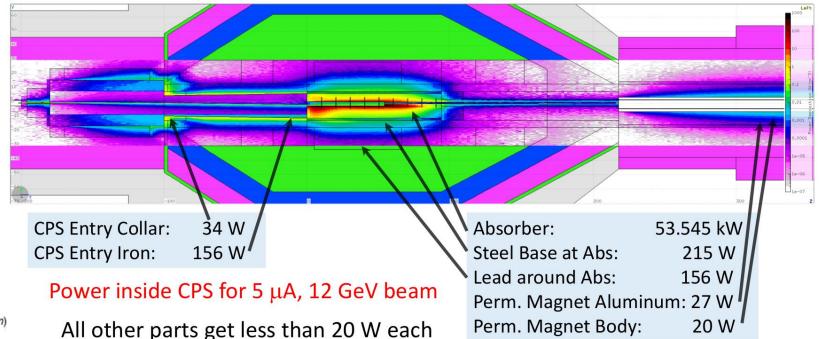
- > Accumulated doses are evaluated outside of CPS.
 - □ We will use this map for equipment installations in the tagger hall.
- > CPS is not expected to be disassembled for a very long time.
 - ☐ It can be moved aside to restore GlueX photon beamline.



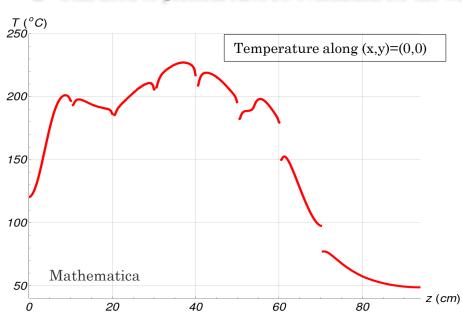

Accumulated Doses in the Magnets

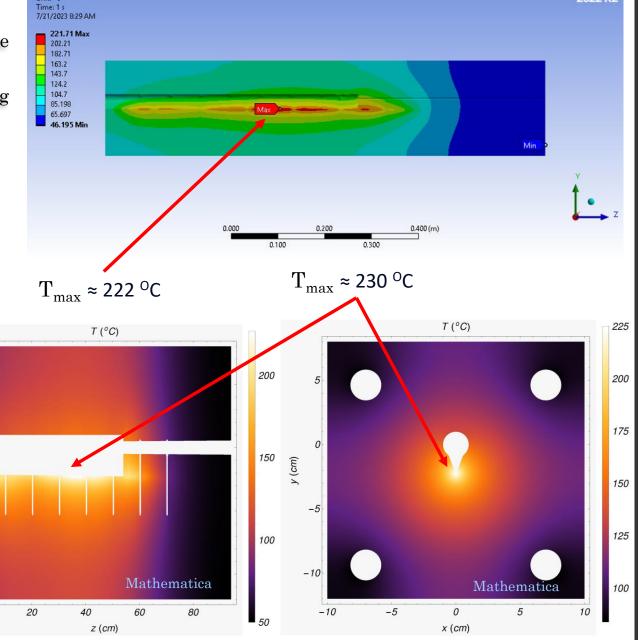
- Accumulated dose to upstream magnet coils in 10000 hours is expected to be $3x10^4$ Gy.
 - Magnet coil insulation made of cyanate ester resins can handle over 10⁶ Gy dose.
 - Reference: P.E. Fabian, et al "Novel Radiation-Resistant Insulation Systems for Fusion Magnets," Fusion Engineering and Design, Vol. 61-62, pp. 795-799, 2002


- Hall D strontium ferrite permanent do not change at such a dose.
 - FNAL did not observe any change in B-field after a dose of 10⁷ Gy.
 - FNAL gave an upper limit of 1% change, as specified in the magnet specs.


Absorber Temperature

Power Deposition in the Absorber


- > FLUKA provides an output file with power deposition densities in 3D.
 - □ 30M data points inside absorber
- Almost all of the remaining electron beam power (> 98%) is deposited into the copper absorber.
 - Most likely that only absorber needs cooling.
 - □ Must prevent heat transfer from absorber to surrounding volumes.

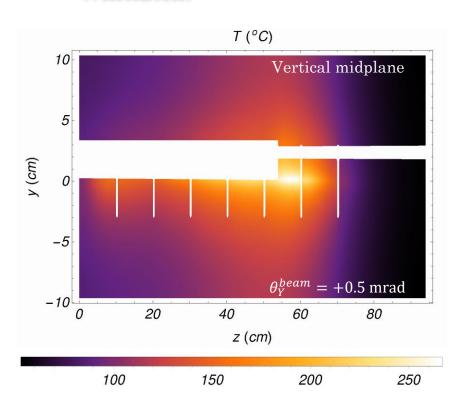

Color indicates power deposition density (kW/cm³), x = 0 plane shown

Temperature

- Temperature calculations in the "isolated" absorber is done using power deposition maps obtained using FLUKA.
- Two independent calculations are done by two people using two different software packages:
 - ANSYS software, popular among engineers
 - Wolfram Mathematica software, popular among scientists
 - The results are in a good agreement.
- The temperature at the hotspot is expected to be ~ 230 $^{\rm OC}$ at nominal beam parameters.
- There is no high temperature at the outer boundaries of the absorber, except the front side.
 - Still need to perform ANSYS evaluation for the whole CPS.

B: Steady-State Thermal

Type: Temperature


-10

Ansys

Temperature vs Beam Conditions

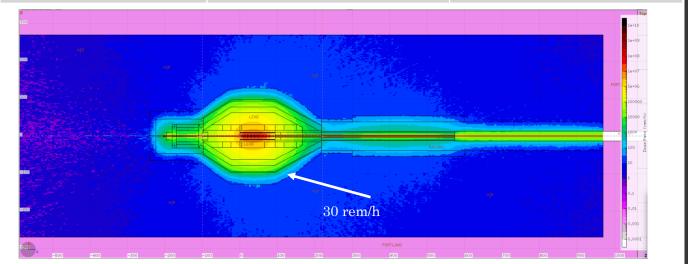
- Temperature in the copper core depends on the beam conditions.
- ightharpoonup Expected temperature range is $200~{\rm ^{O}C}$ < $T_{\rm max}$ < $300~{\rm ^{O}C}$.
- Deformations and stresses are being studied in ANSYS. See talk by Tim Whitlatch.

- Multiple beam conditions has been simulated with FLUKA and the resulting temperature distributions evaluated.
- > Temperatures in all studied conditions appear to be manageable.
 - □ We will impose restrictions on the beam conditions.

Test Configuration Name	Z _{max} (cm)	T _{max} (°C)	T _{cold} (°C)
All Nominal	37	230	100
$\sigma^{(x,y)}_{beam} = 0.33 \text{ mm}$	43	290	105
$\sigma^{(x,y)}_{beam} = 1.5 \text{ mm}$	8.5	245	100
97% B-field	56.5	245	100
103% B-field	33	240	100
-1mm shift in Y	8	265	110
+1mm shift in Y	57	265	105
-0.5mrad angle in Y	8.5	265	110
+0.5mrad angle in Y	58	275	105
+1mm shift in X	8.2	260	100
+0.5mrad angle in X	8	260	100

Summary

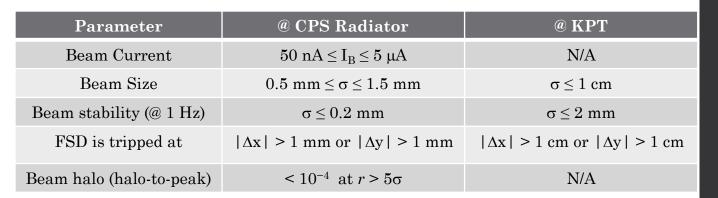
Electron Beam Requirements

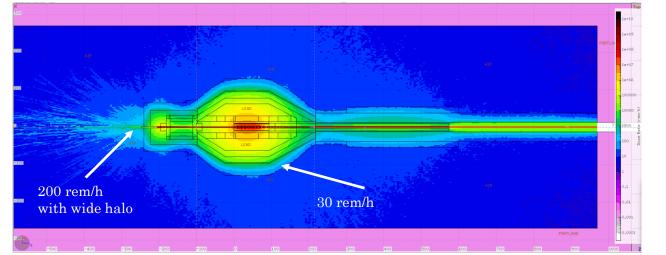

- It is important to have a good beam on the 150 radiator.
 - $\theta_v^{beam} = +0.5 \text{ mrad}$ z (cm) 20 60

High	er Temperatur	res in th	ne absorber
		_	
- High	Ora Tomas omotives	and in the	aa ahaamha
	er Temberatur	es in ti	ne absorber
	01 10111100100011	00 111 01	

Excessive radiation in Tagger Hall.

- We found that beam rastering will not be necessary.
 - We will need to make sure that beam profile is wide using wire scans at CPS.
- Install a girder just upstream of CPS with:
 - BCM to measure the beam current,
 - BPM to measure beam positions,
 - Wire scanner for beam widths.
- FSD trips on
 - Large electron beam positions excursions,
 - Use a collar and ion chambers.
 - Electron beam angle excursion,
 - o Measure photon beam position at KPT.
 - Magnet current deviations.
 - Use power supply ADCs.
- Keep Hall D radiator scanner for the halo measurement.

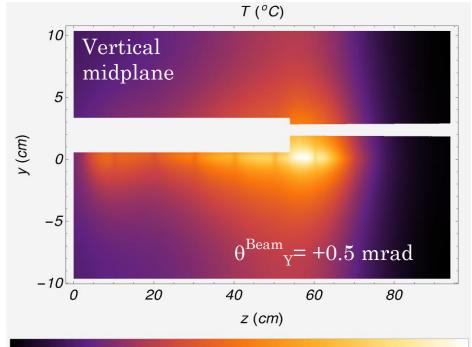

Parameter	@ CPS Radiator	@ KPT	
Beam Current	$50~\text{nA} \leq I_B \leq 5~\mu\text{A}$	N/A	
Beam Size	$0.5~\text{mm} \leq \sigma \leq 1.5~\text{mm}$	$\sigma \le 1 \text{ cm}$	
Beam stability (@ 1 Hz)	$\sigma \leq 0.2 \text{ mm}$	$\sigma \leq 2 \text{ mm}$	
FSD is tripped at	$ \Delta x > 1 \text{ mm or } \Delta y > 1 \text{ mm}$	$ \Delta x > 1$ cm or $ \Delta y > 1$ cm	
Beam halo (halo-to-peak)	$< 10^{-4} \text{ at } r > 5\sigma$	N/A	

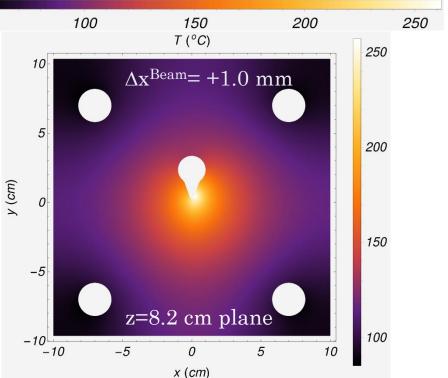


- Electron Beam Requirements
 - 250
 200
 150 $\theta_Y^{beam} = +0.5 \text{ mrad}$

60

- It is important to have a good beam on the radiator.
 - Excessive radiation in Tagger Hall.
 - □ Higher Temperatures in the absorber.
- > We found that beam rastering will not be necessary.
 - We will need to make sure that beam profile is wide using wire scans at CPS.
- ➤ Install a girder just upstream of CPS with:
 - □ BCM to measure the beam current,
 - □ BPM to measure beam positions,
 - Wire scanner for beam widths.
- > FSD trips on
 - □ Large electron beam positions excursions,
 - Use a collar and ion chambers.
 - □ Electron beam angle excursion,
 - o Measure photon beam position at KPT.
 - Magnet current deviations.
 - Use power supply ADCs.
- > Keep Hall D radiator scanner for the halo measurement.

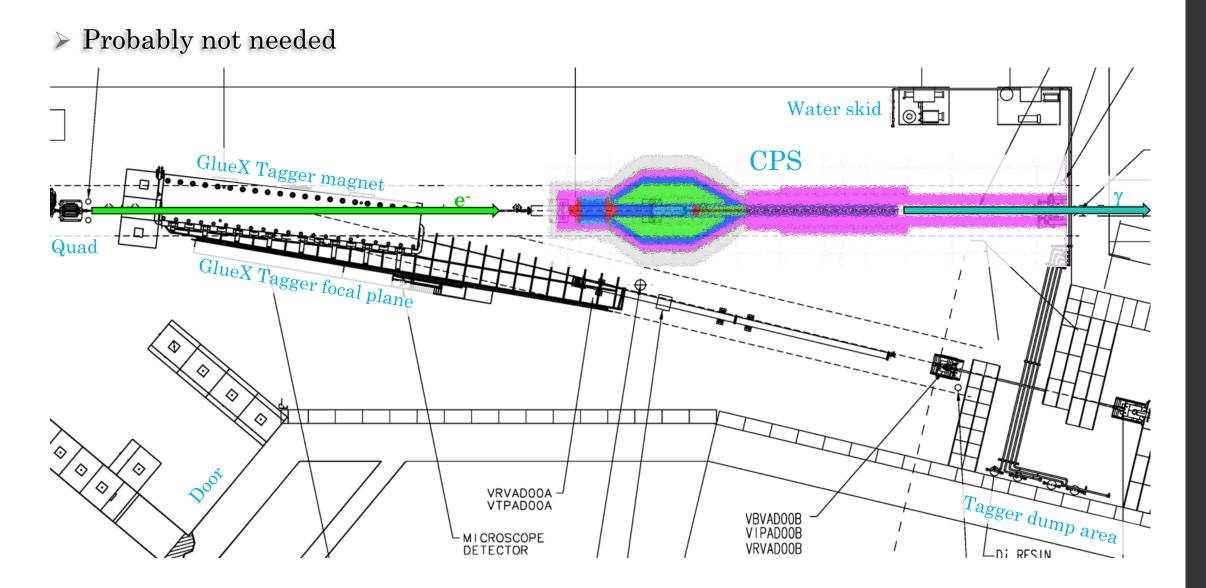

Conclusions


FACILITY

- > We developed a conceptual design of CPS for Hall D.
 - □ It will provide photon beam at KPT that would meet KLF requirements.
 - □ We will use a movable platform to be able to restore GlueX beamline.
- ➤ No major R&D is anticipated for the design and construction of CPS.
 - □ Need to optimize CPS and develop engineering design.
- > We performed FLUKA simulations to estimate the radiation levels around CPS.
 - Radiation environment should be similar or better than GlueX would have at 5μA.
 - □ No civil construction is needed in tagger hall.
- > We are in contact with Accelerator Division regarding beam requirements for CPS.
 - No show-stoppers are identified.
- Working on optimization of the basic design.
 - □ Check radiation environment with newer versions of FLUKA.
- > Engineering design is the next step.

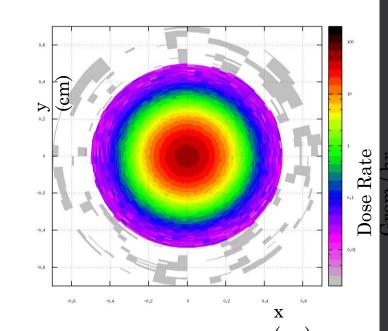
Potential Problems and Mitigations

- At very large vertical angles (500 μrad), the beam can penetrate deep into CPS and cause somewhat elevated temperatures (275 °C).
 - □ The radiation environment is probably not going to be affected much.
 - ☐ The photon beam position needs to be monitored and used in the beam interlock.
- ➤ At large horizontal shifts (~1 mm), the beam can impact the upstream wall of the absorber missing the keyhole and thus cause high temperatures (300 °C).
 - ☐ The radiation environment is probably not going to be affected much.
 - □ Beam position need to be monitored and beam needs to be shut off at large excursions.


Cost and Schedule

- ➤ The total weight estimate for the new installations in Tagger Hall is ~90??? metric tons.
 - □ According to Facilities Management, Tagger Hall can easily accommodate 100 metric tons.
- ➤ Total cost of the CPS, including magnet and PS, is ~\$1M.
 - □ Electron beam instrumentations upstream of CPS will be extra.

CPS Location in Tagger Hall



> fsgfd

