Be-Target Assembly Conceptual Design: Progress & Plans

Igor Strakovsky

The George Washington University

(for KLF Collaboration)

- Hall D beam line for
- Hall D setting.
- MCNP6 radiation transport code.
- KPT & Plug materials.
- Be-target assembly.
- Biological dose rate for n & γ.
- Muon background.
- Where we are now & where to go.

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10^{12} y/sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- K_Ls (1 x 10⁴ K_L/sec) are hitting LH₂/LD₂ target within GLueX setting.

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10^{12} y/sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- $K_L s$ (1 x 10⁴ K_L / sec) are hitting LH_2 / LD_2 target within GLueX setting.

Sean Dobb's Talk

2/2/2020

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10¹² γ/sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- $K_L s$ (1 x 10⁴ K_L / sec) are hitting LH_2 / LD_2 target within GLueX setting.

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10^{12} γ /sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- K₁s (1 x 10⁴ K₁/sec) are hitting LH₂/LD₂ target within GLueX setting.

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10^{12} γ /sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- K₁s (1 x 10⁴ K₁/sec) are hitting LH₂/LD₂ target within GLueX setting.

2/2/2020

- Realism of simulations is based on advanced nuclear cross section libraries created & maintained in national laboratories of complex.
- Physical models, implemented in Code, take into account
 - bremsstrahlung photon production,
 - photonuclear reactions,
 - neutron & photon multiple scattering processes.
- MCNP6 model simulates 12 GeV 5 μA electron beam hitting Cu-radiator inside CPS.
- Electron transport is traced in Cu-radiator, vacuum beam pipe for bremsstrahlung photons, Be.
- Neutrons & gammas is traced in all components of model.
- Media outside concrete walls of collimator alcove & bremsstrahlung photon beam pipe were excluded from consideration to facilitate calculations. Additionally, we ignore PS & KFM magnets but took into account 5 SEG-blocks around beam pipe in front of GlueX spectrometer.
- For calculations (in terms of flux [part/s/cm²] & biological dose rate [mrem/h]). several tallies were placed along beam, collimator alcove, & experimental hall for neutron & gamma fluence estimation.

2/2/2020

Why Be was Selected for KPT

• Previous **SLAC** studies shown that **Be** is optimal material for kaon photoproduction.

• Kaon yield $\sim X_0 * \rho \& Ratio(Be/C) = (65/43) = 1.51$

• \mathbb{N} calculations show that Be reduces yield of $\mathbb{N} \otimes \gamma$.

At key area for RadCon on ceiling

Be: n: 0.273±0.083 mrem/h R(C/Be)=1.45

γ: 0.065±0.002 mrem/h

C: n: 0.397±0.197 mrem/h

y: 0.080±0.002 mrem/h

Why W was Selected for Plug

• Previous **SLAC** studies shown that **W** has low absorption factor for **K**₁.

calculations show that W-plug reduces yield for $n \& \gamma$.

At key area for RadCon on ceiling

W: n: 0.273±0.083 mrem/h R(Pb/W)=2.25 R(Cu/W)=9.29

γ: 0.065±0.002 mrem/h

Pb: n: 0.614±0.246 mrem/h y: 0.527±0.006 mrem/h

Cu: n: 2.537±0.385 mrem/h y: 4.343±0.020 mrem/h

G.W. Brandenburg et al, Phys Rev D 7, 708 (1973)

K_L Beam Flux

- Flux of Kaons will be 1 x 10⁴ K_L/sec on LH₂/LD₂ within GlueX detector, which has large acceptance with coverage of both charged & neutral particles.
- This flux will allow statistics in case of LH₂ /LD₂ to exceed that of earlier SLAC experiments by almost three orders of magnitude.
- We simulated *Kaon* & *neutron* production from
 12 GeV electrons for by PYTHIA & MCNIPS
 & results are in reasonable agreement with results measured by SLAC @ 16 GeV.
- Delivered with 64 nsec bunch spacing avoids overlap between neutrons & Kaons in range of p = 0.35 - 10.0 GeV/c.

See recent talk by Todd Satogata

G.W. Brandenburg et al, Phys Rev D 7, 708 (1973)

With proton beam, ratio n/K₁ = 10³-10⁴.

- Be-target assembly will weight 14.5 t
- Be-target has estimated cost of \$1.12M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall,
 & is sufficient to dissipate 6 kW of power
 delivered by photon beam to Be-target & W-plug.

xy-cross section, x-dimension

 $\rho(W) = 16.3 \text{ g/cm}^3 - \text{Rolf's value}$

Concrete walls are out of scale

Gammas on face of Be-target

- Be-target assembly will weight 14.5 t
- Be-target has estimated cost of \$1.12M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall,
 & is sufficient to dissipate 6 kW of power
 delivered by photon beam to Be-target & W-plug.

xy-cross section, x-dimension

 $\rho(W) = 16.3 \text{ g/cm}^3 - \text{Rolf's value}$

Concrete walls are out of scale

At key area for RadCon on ceiling

Pb & W

<mark>n: 0.349±0.172 mrem/h</mark>

y: 0.078±0.005 mrem/h

- Be-target assembly will weight
- Be-target has estimated cost of \$1.12M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall, & is sufficient to dissipate 6 kW of power delivered by photon beam to Be-target & W-plug.

xy-cross section, x-dimension

 $\rho(W) = 16.3 \text{ g/cm}^3 - \text{Rolf's value}$

Concrete walls are out of scale

At key area for RadCon on ceiling

n: 0.349±0.172 mrem/h Pb & W

y: 0.078±0.005 mrem/h

Pb & no W n: 0.614±0.246 mrem/h

y: 0.527±0.006 mrem/h

50 cm

Be-Target Assembly

- xy-cross section, x-dimension
- **Borated Polyethylene** ∱ø 120 cm

Ø 100 cm,

Air Ø 76 cm Tungsten **Photons** Ø<mark>6 cm Be</mark> Vacuum 40 cm 70 cm

- Be-target assembly will weight
- Be-target has estimated cost of \$1.12M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CFBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall, & is sufficient to dissipate 6 kW of power delivered by photon beam to Be-target & W-plug.

At key area for RadCon on ceiling

n: 0.349±0.172 mrem/h Pb & W

y: 0.078±0.005 mrem/h

n: 0.614±0.246 mrem/h Pb & no W

y: 0.527±0.006 mrem/h

Pb & W-plug n: 0.273±0.083 mrem/h

y: 0.065±0.002 mrem/h

2/2/2020

xy-cross section, x-dimension

- Be-target assembly will weight 14.5 t → 12 t
- Be-target has estimated cost of \$1.12M → \$0.134M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall, & is sufficient to dissipate 6 kW of power delivered by photon beam to Be-target & W-plug.

2/2/2020

Igor Strakovsky

• For neutron & gamma calculations, we use radiation transport code.

• For neutron & gamma calculations, we use radiation transport code.

• For neutron & gamma calculations, we use radiation transport code.

• For neutron & gamma calculations, we use radiation transport code.

2/2/2020

• For neutron & gamma calculations, we use radiation transport code.

• For neutron & gamma calculations, we use radiation transport code.

• For neutron & gamma calculations, we use radiation transport code.

Prompt Plots

Vertical cross section of neutron flux calculated using MCNP6.

Gamma Halo around Beam.

Muon Background

 Our simulations included BH muon background from KPT & photon dump @ CPS, both backgrounds into GlueX detector & muon dose rate outside Hall D.

- Most of muons are coming from W-plug.
- Number of produced muon in KPT & W-plug is about the same, but muons originating in W have much softer momenta.
- Muon Flux is ~10⁷ μ/sec.
- Our calculations show that muons will be swept out of kaon beamline.

experiment is tolerable.

Where We are Now & Where to Go

- Kaon flux @ KLF will allow statistics in case of LH₂ target to exceed that of earlier SLAC experiments by almost three orders of magnitude.
- Calculations for KPT were performed for different **shielding** configurations to minimize **neutron** & **gamma** prompt radiation dose rate & reduce price of KPT.
- Neutron & gamma flux & dose rate for is below JLab RadCon requirement establishing radiation dose rate limit in experimental hall.

 Materials & equipment: \$0.134M.
- Neutron flux & energy distribution on face of LH₂/LD₂ cryogenic target is important physical background in case of np or nd interactions in cryogenic target.
- Neutron dose rate for SiPM of SC, surrounded cryogenic LH₂/LD₂ target, & BCAL is also important.
 SiPM costs \$20 a piece. One cannot expect problem to replace them every 6-12 mo.
- Engineering design is in order?

Any Questions?

Collimator Alcove & Experimental Hall

[29.5 m long x 17.2 m wide]

2/2/2020