Be-Target Assembly Conceptual Design: Progress & Plans

Igor Strakovsky

The George Washington University

(for KLF Collaboration)

- Hall D beam line for
- Hall D setting.
- MCNP6 radiation transport code.
- KPT & Plug materials.
- Be-target assembly.
- Biological dose rate for n & γ.
- Muon background.
- Where we are now & where to go.

• Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10^{12} y/sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.

Sean Dobb's Talk

GW Data Analysis Center —
 Institute for Nuclear Studies

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10¹² γ/sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- K₁s (1 x 10⁴ K₁/sec) are hitting LH₂/LD₂ target within GLueX setting.

Data Analysis Center
 Institute for Nuclear Studies

- Electrons (3.1 x 10¹³ e/sec) are hitting Cu-radiator @ CPS located in Tagger alcove.
- Photons (4.7 x 10^{12} γ /sec @ E > 1.5 GeV) are hitting Be-target located in collimator alcove.
- K₁s (1 x 10⁴ K₁/sec) are hitting LH₂/LD₂ target within GLueX setting.

Most important & unpleasant background for K₁ comes from neutrons.

Most important & unpleasant background for K₁ comes from neutrons.

• Most important & unpleasant background for K₁ comes from neutrons.

2/8/2020

• Most important & unpleasant background for K₁ comes from neutrons.

Most important & unpleasant background for K₁ comes from neutrons.

- Realism of simulations is based on advanced nuclear cross section libraries created & maintained in national laboratories of complex.
- Physical models, implemented in code, take into account
 - bremsstrahlung photon production,
 - photonuclear reactions,
 - neutron & photon multiple scattering processes.
- MCNP6 model simulates 12 GeV 5 μA electron beam hitting Cu-radiator inside CPS.
- Electron transport is traced in Cu-radiator,
 vacuum beam pipe for bremsstrahlung photons,
 Be.
- Neutrons & gammas is traced in all components of memory model.
- Media outside concrete walls of collimator alcove & bremsstrahlung photon beam pipe
 were excluded from consideration to facilitate calculations.
 Additionally, we ignore PS & KFM magnets but
 took into account 5 SEG-blocks around beam pipe in front of GlueX spectrometer.
- For calculations (in terms of flux [part/s/cm²] & biological dose rate [mrem/h]). several tallies were placed along beam, collimator alcove, & experimental hall for neutron & gamma fluence estimation.

Why Be was Selected for KPT

• Previous **SLAC** studies shown that **Be** is optimal material for kaon photoproduction.

• Kaon yield $^{\sim}$ X₀ * ρ & Ratio(Be/C) = (65/43) = **1.51**

calculations show that Be reduces yield of n.

At key area for RadCon on ceiling

Be: n: 0.27 ± 0.08 mrem/h R(C/Be)=1.45

γ: 0.065±0.002 mrem/h

C: n: 0.40 ± 0.20 mrem/h

γ: 0.080±0.002 mrem/h

Why W was Selected for Plug

• Previous **SLAC** studies shown that **W** has low absorption factor for **K**₁.

Kaon: W/Cu(20%) = **1.16** @ $P_k = 1.0$ GeV/c = 1.36 @ P_k = 0.5 GeV/c

calculations show that W-plug reduces yield for $n \& \gamma$.

At key area for RadCon on ceiling

W: n: 0.27 ± 0.08 mrem/h R(Pb/W)=2.25 R(Cu/W) = 9.29

γ: 0.065±0.002 mrem/h

Pb: n: 0.61 ± 0.25 mrem/h γ: 0.527±0.006 mrem/h

Cu: n: $2.54 \pm 0.39 \text{ mrem/h}$ γ : 4.34 ± 0.02 mrem/h

G.W. Brandenburg et al, Phys Rev D 7, 708 (1973)

Flux of Kaon Beam

- Flux of Kaons will be 1 x 10⁴ K_L/sec on LH₂/LD₂ within GlueX detector, which has large acceptance with coverage of both charged & neutral particles.
- This flux will allow statistics in case of LH₂ /LD₂ to exceed that of earlier SLAC experiments by almost three orders of magnitude.
- We simulated *Kaon* & *neutron* production from 12 GeV electrons for by PYTHIA & CORES & results are in reasonable agreement with results measured by SLAC @ 16 GeV.

 Delivered with 64 nsec bunch spacing avoids overlap between neutrons & Kaons in range of

p = 0.35 - 10.0 GeV/c.

See recent talk by Todd Satogata

With proton beam, ratio n/K_L = 10³-10⁴.

Be-Target Assembly

Be-target assembly will weight 14.5 t

• Be-target has estimated cost of \$1.12M

- Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
- Water Cooling is available in experimental hall,
 & is sufficient to dissipate 6 kW of power
 delivered by photon beam to Be-target & W-plug.

xy-cross section, x-dimension

 $\rho(W) = 16.3 \text{ g/cm}^3 - \text{Rolf's value}$

Gammas on face of Be-target

At key area for RadCon on ceiling

Pb & W

<mark>n:</mark> 0.35 ± 0.17 mrem/h

y: 0.078±0.005 mrem/h

xy-cross section, x-dimension

 $\rho(W) = 16.3 \text{ g/cm}^3 - \text{Rolf's value}$

Concrete walls are out of scale

Be-Target Assembly

- Be-target assembly will weight 14.5 t
- Be-target has estimated cost of \$1.12M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall,
 & is sufficient to dissipate 6 kW of power
 delivered by photon beam to Be-target & W-plug.

At key area for RadCon on ceiling

Pb & W n: 0.35 ± 0.17 mrem/h

γ: 0.078±0.005 mrem/h

Pb & no W n: 0.61 ± 0.25 mrem/h

<mark>γ: 0.527±0.006 mrem/h</mark>

Be-Target Assembly

xy-cross section, x-dimension

- Be-target assembly will weight 14.5 t
- Be-target has estimated cost of \$1.12M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall,
 & is sufficient to dissipate 6 kW of power delivered by photon beam to Be-target & W-plug.

At key area for RadCon on ceiling

Pb & W n: 0.35 ± 0.17 mrem/h

γ: 0.078±0.005 mrem/h

Pb & no W n: 0.61 ± 0.25 mrem/h

<mark>γ: 0.527±0.006 mrem/h</mark>

Pb & W-plug n: 0.27 ± 0.08 mrem/h

γ: 0.065±0.002 mrem/h

Be-Target Assembly

xy-cross section, x-dimension

- Be-target assembly will weight 14.5 t→ 12 t
- Be-target has estimated cost of \$1.12M → \$0.134M
 - Changeover from photon to Kaon beamline & vice versa is expected to take about half year or less, & thus should fit well into beam breaks of current CEBAF schedule.
 - Collimator alcove has enough space (with 4.52 m width) for Be-target assembly to remain far enough from beamline.
 - Water Cooling is available in experimental hall,
 & is sufficient to dissipate 6 kW of power delivered by photon beam to Be-target & W-plug.

At key area for RadCon on ceiling

Pb & W n: 0.349±0.172 mrem/h

γ: 0.078±0.005 mrem/h

Pb & no W η: 0.614±0.246 mrem/h γ: 0.527±0.006 mrem/h

Pb & W-plug n: 0.273±0.083 mrem/h

y: 0.065±0.002 mrem/h

24 cm in diam: $n: 0.77 \pm 0.33 \text{ mrem/h}$

γ: 0.074±0.002 mrem/h

15 cm in length: n: 0.16 ± 0.06 mrem/h γ: 0.003±0.001 mrem/h

2/8/2020

Hall D Setting & Dose Rate

2/8/2020

Hall D Setting & Dose Rate

Prompt Plots

• Vertical cross section of neutron flux calculated using MCNP6.

Vertical cross section of gamma flux calculated using

Soft gammas from elements of LH_2/LD_2

Muon Background

- Most of muons are coming from W-plug.
- Number of produced muon in KPT & W-plug is about the same, but muons originating in W have much softer momenta.
- Muon Flux is ~10⁷ μ/sec.
- Our calculations show that muons will be swept out of kaon beamline.

experiment is tolerable.

Where We are Now & Where to Go

- Kaon flux @ KLF will allow statistics in case of LH₂ target to exceed that of earlier **SLAC** experiments by almost three orders of magnitude.
- Calculations for KPT were performed for different **shielding** configurations to minimize **neutron** & **gamma** prompt radiation dose rate & reduce price of KPT.
- Neutron & gamma flux & dose rate for is below JLab RadCon requirement establishing radiation dose rate limit in experimental hall. Materials & equipment: \$0.134M.
- Neutron flux & energy distribution on face of LH₂/LD₂ cryogenic target is important physical background in case of np or nd interactions in cryogenic target.
- SiPMs of SC & BCAL are expected to tolerate expected neutron background.
- Engineering design is in order?

Collimator Alcove & Experimental Hall

[29.5 m long x 17.2 m wide]

