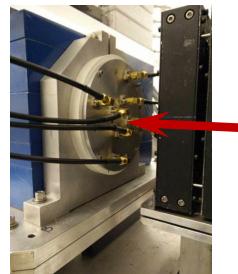

Active Collimator Temperature with a 20% Radiator


Hovanes Egiyan

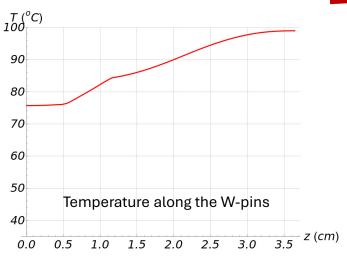
FLUKA Data

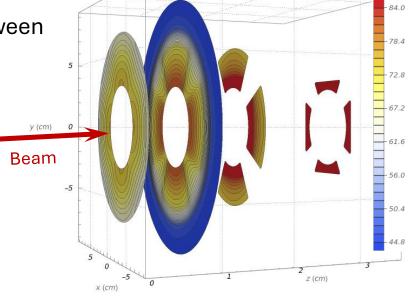
- Use FLUKA power deposition map for a 20% radiator to estimate the temperatures in the Active Collimator, Be-target and Wplug.
- Tungsten in AC collimator has aperture of D=6cm
 - 90W is absorbed in each AC wedge.
 - Power deposited in the cooper around Betarget is reduced by ~400W.
- AC can be cooled
 - With water through the outer edges through boron nitride cup.
 - With forced air via the aluminum backplate and via the boron nitride cup.
 - We need to avoid contact with aluminum back-plate and the collector plate as to not distort AC signals.
- Boron Nitride is not isotropic
 - Manufacturer only provided a single number for thermal conductivity.
 - Unsure about the type of lattice of BN.
- Amount of power removed through the mounting of AC in the KPT assembly depends on the details of engineering design and cannot be evaluated at this time.

Beam

Water Cooled, Isotropic

- Model AC geometry in Mathematica
 - W-wedges
 - Boron Nitride insulator cup
 - Al back-plate
 - · Cu housing ring for cooling
 - Scalar thermal conductivity $\kappa(\vec{x})$:
 - 35 W/(m K) for BN-B (PDF document, mfr. site),
 - 146 W/(m K) for W,
 - 238 W/(m K) for Al,
 - 385 W/(m K) for Cu.
- Water cooling through the outer radius of the cooling ring.
 - Water average temperature T=35 °C .
 - Heat exchange coefficient for water is 5000 W/(K m²).
 - No radiation or convection assumed.

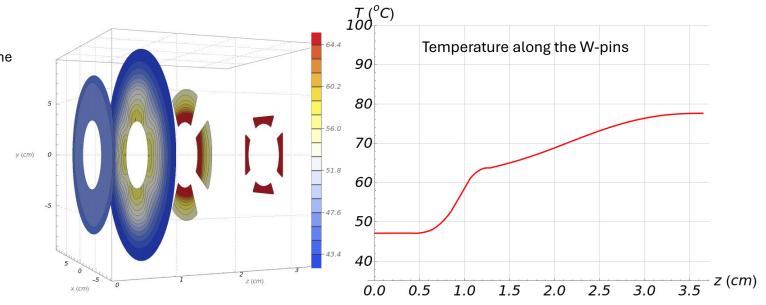

Temperature drop $\Delta T \approx 50$ °C between the hotspot and cooling surface:

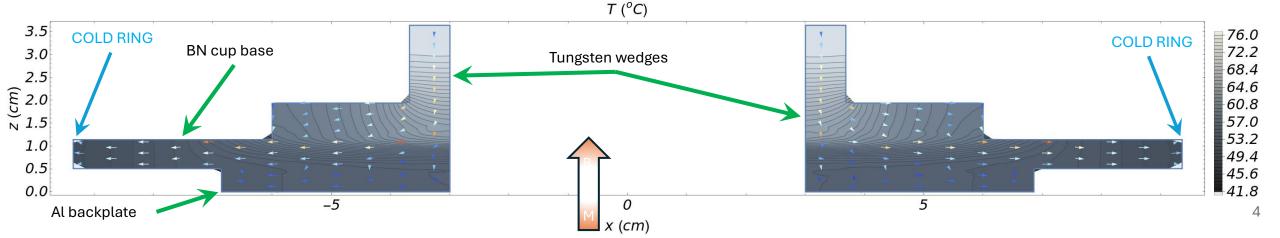

 $\vec{\nabla} \cdot \left(\kappa(\vec{x}) \cdot \vec{\nabla} T(\vec{x}) \right) = p(\vec{x})$

• $T_{\text{max}} \sim 100 \, ^{\circ}\text{C}$ at the tip W-pins,

• T_{Cu} ~45 $^{\circ}$ C in Cu ring,

• T_{Al} ~75 °C in Al back-plate.





Water-cooled, Anisotropic, Axial

$$\vec{\nabla} \cdot \left(\kappa(\vec{x}) \cdot \vec{\nabla} T(\vec{x}) \right) = p(\vec{x}) \qquad \kappa(\vec{x}) = \begin{bmatrix} \kappa_r(\vec{x}) & 0 & 0 \\ 0 & \kappa_r(\vec{x}) & 0 \\ 0 & 0 & \kappa_r(\vec{x}) \end{bmatrix}$$

- Thermal conductivity is a diagonal tensor with three components $(\kappa_r, \kappa_r, \kappa_z)$
 - For BN ceramics they are (400, 400, 4) W/(m K), taken from some article found on the web.
 - For other materials, the thermal conductivity is a unit tensor times the thermal conductivity.
 - 146 W/(m K) for W,
 - 238 W/(m K) for Al,
 - 385 W/(m K) for Cu.
- Water cooling through the outer radius of the cooling ring.
 - Water average temperature T=35 °C.
 - Heat exchange coefficient for water is 5000 W/(K m²).
 - · No radiation or convection assumed.
- Temperature drop ∆T≈ 36 °C between the hotspot and cooling surface:
 - T_{max} ~78 °C at the tip W-pins,
 - T_{Cu}~42 °C in Cu ring,
 - T_{AI} ~47 °C in Al back-plate.

Water-cooled, Anisotropic, Transverse Temperature along the W-pins Assume "bad" conductivity in the x-direction. 90 80 Use parameters as in the axial case and solve the equation. 70

 $T(^{o}C)$

x (cm

y (cm)

BN cup base

Temperatures are low

3.5

3.0

2.5

1.0

0.5

0.0

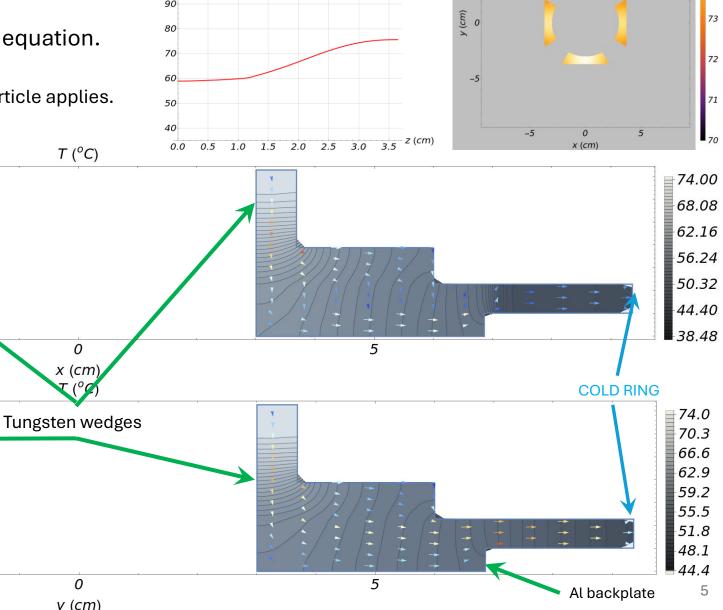
3.5

3.0

(E) 2.0 N 1.5

1.0

0.5


0.0

COLD RING

(E) 2.0 N 1.5

• Not sure of the thermal conductivity tensor from the article applies.

-5

T (°C)

Air-cooled, Isotropic

- Forced air cooling through the upstream surface of BN cup, and Al back-plate, and upstream and side face of copper ring, .
 - Air with average temperature T=20 °C.
 - Heat exchange coefficient for air is $20 \text{ W/(K m}^2)$.
 - Not sure about this number.
 - No other modes of power dissipation assumed.
- Temperature drop $\Delta T \approx 40$ °C between the hotspot and cooling surface:
 - T_{max} ~475 °C at the tip W-pins,

BN cup base

T_{Cu}~445 °C in Cu ring,

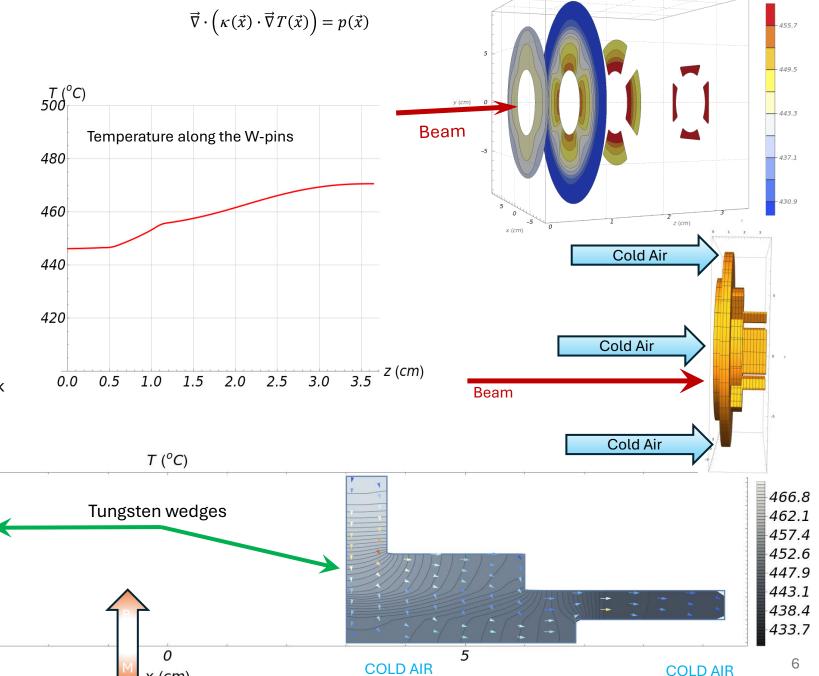
3.5

3.0

(E) 2.0 N 1.5

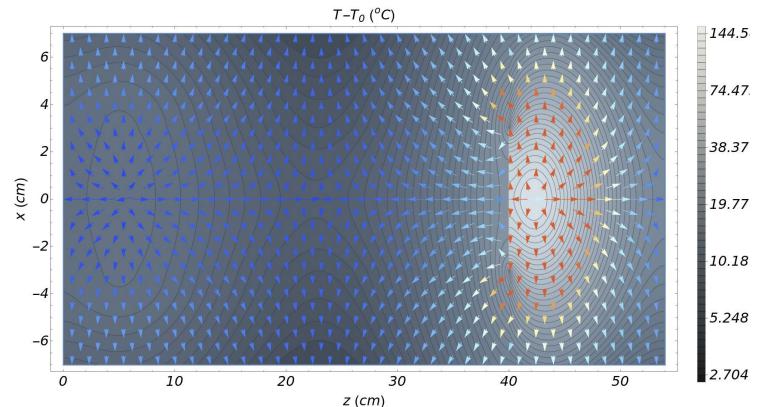
0.5

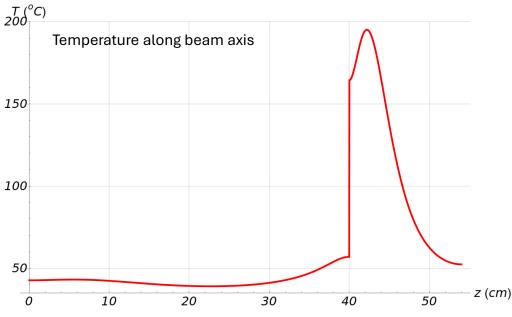
0.0


Al backplate

- $T_{\Delta 1}$ ~435 °C in Al back-plate.
- The back-plate surface will become hot >400 °C.
 - Heat flow through the mounting surface to the bulk of KPT assembly will reduce the temperature.

COLD AIR


x (cm)


If heat exchange coefficient is lower, then the temperature will be higher.

Be-target and W-plug Temperature

- Used the same Mathematica notebook as I did for last week
 - Cooling from four sides with water at average temperature $T_0=35$ °C.
- Not much difference observed in the temperature distribution near the KPT target due to adding AC to FLUKA geometry.

- Not much difference observed in the temperature distribution near the KPT target due to adding AC to FLUKA geometry.
- Tungsten plug temperature is the same as without AC, T_{max} =195 $^{\circ}$ C.
 - Water temperature at the surface may reach $\rm T_{ws}$ =55 ^{0}C .
- Be-target T_{max} =43 $^{\circ}$ C, decreased by ~2 $^{\circ}$ C.
 - ~400 Wats taken by AC from the copper around Be-target.

Conclusions

- Active collimator used with a 20% radiator can be water-cooled from radial periphery of BN cup.
 - The temperatures of AC with active cooling look OK for thermal conductivity values considered here.
 - The temperature distribution depends on the thermal conductivity of Boron Nitride ceramic cup.
 - Need to get the specifications for the BN cup from the manufacturer to predict the AC temperature.
- With only forced air cooling, the temperatures in AC can get quite high.
 - Heat transfer to the support structure may help, not evaluated here.
- Temperatures around the Be-target are OK, assuming modified configuration of Be-target.
- There does not seem to be a serious problem with high temperatures when using a 20% radiator in CPS.
 - The design of the KPT cooling system will need significant modifications to work with a with 20% radiator.