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1. FLUKA model.

2. Hot Spot  Size and Magnetic field.

3. Coil Insulation  Lifetime.

4. Photon Beam Quality and  Coil.

5. Radiological safety.

6. Absorber   To  and cooling.
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CPS 3 m Long Dipole. 
FNAL prototype   1.5 T ⨉ 3 m,  pole gap  4.2 cm.
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 FLUKA model with FNAL prototype operating at B~0.1 T.
e-Beam 5 𝜇A, FWHM = 0.25 cm, e-Beam Hole = 0.6⨉0.6 cm2, Cu radiator  0.134 cm. 

● Absorber design (max. To) with autonomous cooling   determines  Dipole  dimensions. 

● Low  field  allows  wider    gap  between poles  => More room for cooling pipes.  

● Magnet coil may be 0.4 m long => more room for Absorber in Hot Spot.
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Cooling pipe location and Energy Deposition in Absorber.  Example at B=0.22 T.
e-Beam 5 𝜇A, FWHM = 0.25 cm, e-Beam Hole = 0.6⨉0.6 cm2, Cu radiator  0.134 cm. 

● Inside water pipes  Pmax= 2.E-6 [GeV/cm3/e] ⨉ 3.E+13 [e/s] ⨉ 1.6 E-10 [J/Gev]=0.01 [W/cm3].

● Total ~12 W/pipe.    Looks like there is no problem with water overheating.
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Power Deposition in Hot Spot vs Magnetic Field.

Coil 3 m long   vs Coil 0.4 m long.
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Power Deposition in Hot Spot . Coil 3 m long   B=0.1 T.

6

Ge
V/

cm
3 /e

z/cm

Hot Spot

FWHM=~100 cm

● 45 kW are deposited in the  Absorber. 

● Maximum power deposition in the Hot Spot:   dE/dzdt  =45 kW/FWHM=0.45 kW/cm.

● This value  determines the Hot Spot Temperature.
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CPS with 0.4 m   coils.  Energy  deposition profile vs Magnetic Field.  
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● If  45 kW are deposited in the  
Absorber,  the maximum 
power deposition 

 dE/dzdt  =45 kW/FWHM= 
0.45 kW/cm.

● Hot Spot To  ∝  max dE/dzdt.Hot Spot
0.45 kW/cm

FWHM =~10 cm
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Lifetime of Coil Insulation
vs

Coil Design. 
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Short coil  vs Long coil. Prompt Dose and Insulation  Lifetime.  

Dose in  40 cm coil at  10<z/cm<15 Dose in  3m coil at  145<z/cm<155 

● Short 40 cm coil is wind within  -25<z/cm<15 ;   Long  3m coil – within  -28.5<z/cm<287.

● The maximum dose in the 40 cm coil  ~2.E-8 [GeV/g/e] or 3.2E-15 [Gy/e]  ( ⨉1.6E-7  Gy/(GeV/g)).

● At 5 𝜇A we have 3.E+13 [e/s] => in 40 cm  coil  dose rate = 3.2E-15 [Gy/e]⨉3.E+13 [e/s] ≅ 0.1 [Gy/s].

●  Kapton  withstands 1.E+7 [Gy] => Lifetime   ~1.E+8 [s]=1160 days of continuous operation.

● In 3m coil the maximum  dose ~0.6E-6 [GeV/g/e], and  Lifetime  = 40 days .

● Lifetime may be 5 times longer  using fiberglass cloth.
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Photon beam quality.
Short Coil vs Long Coil.
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From Radiator
S=2.1 [𝜸/cm2]

At KPT
S=0.72 [𝜸/cm2]

Photon Beam  profile at KPT.   Long  vs Short coil.
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● Photon beam  profile fits well  the  Be target of KPT,  but there is  ~1% background of electrons.
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Photon Beam quality at CPS exit.  Coil 0.4 m vs 3 m long.
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● Background      is below 1% in the KPT acceptance of 0.4E-3 sr.

● May be cleaned  up by the beam line  permanent magnet downstream  the CPS. 

Polar Angle/sr

Coill 0.4 m B=0.18 T Coil 3  m B=0.1 T
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Radiological safety.
Dose Equivalent rates after 1000 hrs of continuous 

operation and 1 hr break
at 4 surfaces of CPS
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     After One Hr Dose Equivalent is below 100 mrem/hr .  Dipole 3 m ⨉ 0.1 T.    

Upstream                       y/cm

Downstream y/cm

Top z/cm

Bott. z/cm

1.E5 pSv/e  →  36 mrem/hr
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Absorber Design and Cooling
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● Absorber  with round beam hole  eliminates the  problem of  top–bottom  thermal contact. 
● Direct contact to  cooling  liquid in   each segment is an advantage.   

   Segmented Copper  Absorber inside Dipole  0.1 T ⨉ 3 m.  
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Cooling and   Temperature jump at the Absorber-Water boundary.

Copper  Bar 
l=100 cm 
w=4 cm  
h=27  cm. 

● To reduce Ts   make Absorber width   proportional to dE/dzdt.

● How  heat transfer coefficient is addressed in Fluence FEA software?

● What  should be the temperature difference between Absorber and Coolant ? 

● For  heat transfer  rate from the  surface at  Ts  to liquid at Tm via  area A   we write: 

dQ/dt=k (Ts - Tm ) A   =  45 kW,

where area   A= 𝝅 wl =1250 cm2  ,  

k=4.E-2 [W cm-2 K-1] – “heat transfer coefficient for laminar flow”;  

tabulated empirical  value for “water-Cu-water”  contact;  to be doubled  for  “Cu-water” contact.

 May be 2-3 times  higher for turbulent  flow.   Is  it  used  in FEA calculations (?).

To sink the  uniformly distributed  45 kW  power from  4×27 ×100 cm3 bar,  we find:

Ts - Tm  = 45 kW /(8. E-2 [Wcm-2 K-1] 1.25  E+3 [cm2])  =  450 K.

● At  Tm= 50 C Absorber   temperature at contact with water yields:      Ts = 500 C . 

50o

50o
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  Absorber  slice  heating  by   0.45 kW/cm in Hot Spot.

r

R ● Energy deposition rate in the  Absorber dz-slice along beam line :  
dE/dt= dz ⨉ dE/dzdt  =dz⨉ 0.45 kW/cm;

● Energy balance in  case  of steady heat flow :      dz (dE/dzdt)= dz (- 2 a 𝝒 dT/dr),
     =>            dE/dzdt= - 2a𝝒 dT/dr ,    

                 dT =  -(2a𝝒)-1 dE/dzdt  dr   ,      integrate  r <R ,

  T(r)-T(R) =   (2a𝝒)-1 dE/dzdt  (R-r),

               where
dE/dzdt =0.45  [kW/cm] ; from previous slide.  
T(R)=500 C ;  estimate of Absorber temperature from the previous slide
Absorber height  = 2R;   R=8 cm;    Absorber width a=3.7 cm 
Heat conductivity for  Copper     𝝒 = 3.98 W/cm•K ;   for Tungsten =  1.73 W/cm•K.

T(0)-T(R)= (2*3.7*3.98 )-1 [K/W]*0.45E+3 [W/cm]* 8 [cm]= 120 K.  (~300 K for tungsten)

  Maximal  Hot Spot Temperature   yields:  T(0)=500 C + 120  K  = 620 C .    

Copper  Bar 
dz ⨉ a ⨉ 2R cm3

● Looks like we may  avoid melting of copper.

● FEA calculation  of the Absorber cooling are required ASAP using Fluence software. 

-R

  water  T(R)= 50 C

dz
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Is it possible to evacuate 60 kW from   the Absorber?
● Water speed required to evacuate dE/dt=60 kW through  3 cm-pipe  L=3 m,   S=7 cm2 

dE/dt=Cv(Tout-Tin) v S ,               (1) 

where 

Cv =  4.2 [JK-1cm-3]  –  specific heat capacity of water

Tout-Tin  =70 C –  water flow  temperature change.

 With these numbers Eq. (1) yields:

6.E+4W =4.2 [J K-1cm-3] 70 [K] 7 [cm2] v [cm/s],  

 and we find    v = 30 [cm/s].

● Heating time is of 10 s that is enough to reach Tout=90 C.

● Water flow speed looks consistent with the  power deposition of 60 kW.

● Absorber design looks practical and   may be optimized  using FEA of heat flow.



Conclusive remarks
● With ~0.4 m  long  coils and lower field ~0.1 T  we  avoid  the  risk of  Absorber overheating.

● With ~0.4 m coils and lower field  we avoid the risk of  coil  short circuit ,for up to 5000 days.

● After 1 hr Dose rates  at CPS surfaces are  far   below 100  mrem/hr  (High Radiation Area).

● Photon beam  may additionally  cleaned up with the Hall D  beam line   magnet.

● Total CPS weight is of 60 metric tons.

● Long magnet yoke (3 m)  is a  stable and adjustable housing  for  Absorber.
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What we need to proceed with  Dipole  design. 

● Thermal FEA  model  (Fluence software ) of  Absorber and cooling   lines with known heat 

transfer coefficients.

●  Mesh for thermal calculations should  scale in fraction of mm in the hot spot.

● Iterative Temperature field  calculation  using Energy Deposition Map from FLUKA  to optimize 

Dipole   dimensions.
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