Calibration, Alignment, and PID for KLF

Sean Dobbs Florida State U.

KLF IERR Aug. 29, 2024

KLF Software Overview

KLF Software stack based on existing GlueX stack

•

•

Detector generally stable and calibrations procedures well established Existing procedures have been adapted for KLF running

GlueX data flow

KLF Calibrations

• Subdetector calibrations require individual charged tracks or $\pi^0 \rightarrow \gamma \gamma$ decays, not exclusive reactions. Generally stable.

KLF Calibrations

- Drift chamber calibrations vary with atmospheric conditions
- CDC drives 2 hour run time, partially corrected by RoboCDC

KLF Calibrations

 Subdetector elements close to the beam line can have some dependence on beam intensity

KLF Calibrations — Overview

Detector	Procedure	Est. data required	Frequency
BCAL	per-channel timing	50M events	once
	attenuation length	1B events	once
	z-position	1B events	once
	gains	$70M \pi^0$'s	$\operatorname{monthly}$
	energy non-linearity	$70M \pi^0$'s	monthly
\mathbf{CDC}	per-channel gain	100M events	once
	overall gain, dE/dx	1M events	per-run
	time-to-distance	1M events	per-run
FCAL	per-channel timing	5M events	per-run
	gains	$60 \mathrm{M} \ \pi^0$'s	weekly-monthly
	energy non-linearity	$60 \mathrm{M} \ \pi^0$'s	weekly-monthly
FDC	per-channel timing	1M events	per-run
DIRC	timing	1M events	per-run
\mathbf{SC}	timewalks	10M events	once
	propagation time	100M events	once
TOF	per-channel timing / timewalks	50M events	per-run/several runs
	gains / propagation speed	_	avg. over run
Overall	timing alignment	1M events	per-run

- Order of magnitude estimate for data required
- Expected KLF rates sufficient for calibrations

KLF Calibrations — Timing Alignment

Timing alignment between detectors with respect to ST works well for KL beam
Example for $K_L p \rightarrow K_S p$ events

KLF Calibrations — Hyperon Photon Kinematics

 Photons from hyperon decays cover large kinematic range, mostly in central detector

KLF Calibrations – $K\pi^0$ **Photon Kinematics**

• Photons from $K\pi^0$ events go more forward

KLF Calibrations – π^0 **Calibration Kinematics**

- Photons from π^0 produced in γp events cover full angular range, full energy range for nonlinearity corrections
- Photons from neutron-induced reactions excellent for gain stabilization

KLF Calibrations — Plan

Current calibration plan

•

•

- Collect data during experiment commissioning using "low" intensity photon beam on cryotarget
- Calibration of time-of-flight measurements from KPT
- Perform all standard spectrometer calibrations, particularly calorimeter calibrations
- Expected to require 3-4 days of beam time, depending on available beam intensity

Use K_L beam events to monitor and refine calibrations

Detector Alignment for KLF

- Subdetector positions are stable over the years and regularly updated based on survey measurements
 - Example: Start Counter
- Detailed alignment of tracking elements performed using samples of data with solenoid on and off, using Millepede-based procedure
 - Little to no run dependence observed so far, except for t₀

KLF Particle Identification

GlueX, NIMA 987, 164807 (2021)

- Also identification of decays like $K_S \to \pi^+ \pi^-$ and $\Lambda \to p \pi^-$

KLF Particle Identification — DC dE/dx

CDC dE/dx

- CDC provides π/K separation up to ≈ 0.6 GeV and p/π separation up to ≈ 1.1 GeV
- FDC has less distinguishing power

KLF Particle Identification — Time of Flight

• TOF provides π/K separation up to ≈ 1.5 GeV and p/π separation up to ≈ 2.5 GeV

BCAL β

KLF Particle Identification — Strange Particle Decays

• Also identification of decays like $K_S \to \pi^+ \pi^-$ and $\Lambda \to p \pi^-$

Summary

- KLF software based on well-tested GlueX software stack
- Calibration plans follow known GlueX procedures
 - Considering collecting data with photon beam during experiment commissioning
 - Existing procedures work well with K_L beam data
- Detector alignment procedures well developed and stable
- Particle ID based on dE/dx and TOF
 - DIRC will provide additional discrimination for forward particles
 - Reconstruction of intermediate resonances additional tool for many channels