

Simulation and Reconstruction of $K_L + p \rightarrow K_s + p$ and $K_L + p \rightarrow K^+ + n$ using GlueX tracker in KLF software (S. Dobbs)

Outlook

- 1. Simulated Detector performance: examples dE/dx vs momentum etc.
- 2. Reconstruction of $K_L + p$ final states

 $\rightarrow K_{s}$ + p at **low beam** momenta (Pentaquark region)

- \rightarrow K_s + p at high beam momenta
- \rightarrow K⁺+ n at **low beam** momenta
- \rightarrow K⁺ + n at high beam momenta
- 3. Conclusion

Identification of final particles from $K_L + p \rightarrow K_s + p$ and $K_L + p \rightarrow K^+ + n$ using GlueX CDC tracker.

Hadronic decays, lifetimes and Target dimensions.

K_s→ $\pi^+\pi^-$ 69.2% c τ = 2.9 cm => decays mostly in LH2 target and close to it. → $\pi^0\pi^0$ 30.7%

K⁺→ $\pi^{+}\pi^{+}\pi^{-}$ 5.6 % c τ =371.2 cm =>K⁺ almost "stable" within the LH2 Target and CDC. → $\pi^{+}\pi^{0}$ 20.7 %

- $K_s + p$ reconstruction: via $EM(\pi^+\pi^-)$ to identify K_s and $MM(\pi^+\pi^-)$ for proton.
- K^+ +n reconstruction: via dE/dx in CDC to identify K^+ and MM(K^+) for neutron.

Example. dE/dx in CDC of Gluex Detector .vs. particle momentum for $K_L + p \rightarrow K_s + p$ and $K_L + p \rightarrow K^+ + n$. Beam momentum < 6 GeV/c

Rec. Track momentum, GeV/c

Rec. Track momentum, GeV/c

• Good separation of pions below ~ 1.4 GeV/c and ~ 0.7 GeV/c for K⁺.

LONG

Example. Generated .vs. Reconstructed momenta in $K_L^+ p \rightarrow K_s^-(\pi^+\pi^-) + p$.

• Good reconstruction at all generated momenta.

Example. Reconstruction of $\pi^+\pi^-$ vertex for $K_L^+ p \rightarrow K_s^-(\pi^+\pi^-) + p$.

CU h1111 Entries 58464 Mean 0 4407 Std Dev 0.4881 500 400 F 300 200 DOCA/cm

pow(track_VEX[0],1):pow(track_VEY[0],1) {beam_pz<6&&(abs(track_PiPiMass[0]-0.5)<2.225}}

- LH2 target sized in cm as $r \times z = 3$ cm $\times 40$ cm.
- LH2 target is well reproduced by the $\pi^+ \pi^-$ vertex coordinates.
- Diffuse area around r=3 cm is of 1 cm (=>sigma ~0.25 cm).
- Long exponential r-tail is due to K_s lifetime (c τ =2.9 cm)

Example. Angular distribution of π^+,π^- , and p. Effect of LH2 Target Cut for $K_L^+p \rightarrow K_s^-(\pi^+\pi^-)+p$.

Example. Reconstruction of $\pi^+\pi^-$ vertex for $K_L^+p \rightarrow K_s^-(\pi^+\pi^-) + p$. MM $(\pi^+\pi^-)$ and EM $(\pi^+\pi^-)$ inside LH2 target.

• $EM(\pi^+\pi^-)$ resolution is obviously better inside the LH2 target while the background is significantly lower.