KLF: K_L production and transport

E.Chudakov

Hall D

October 1, 2024

E.Chudakov

KLF Experiment

KLF: K_L production and transport

- $\gamma + p \rightarrow \phi + p, \phi \rightarrow K_L K_S$ production model
- **2** Inclusive $\gamma + \mathbf{p} \rightarrow \mathbf{K}_L + \mathbf{X}$ production in PYTHIA
- **③** K_L transport and rates at the cryo target

$\gamma p \rightarrow \phi(1020)p$ reaction and its modelling

$\gamma p \rightarrow \phi(1020)p$ reaction and its modelling

- Model: fit to the data $d\sigma/dt = A(s) \cdot \exp(6t)$ $1.6 < E_{\gamma} < 12 \text{ GeV}$
- PYTHIA applicable at E_γ > 3 GeV, used in 3 < E_γ < 12 GeV
- PYTHIA for $\gamma p \rightarrow \phi p$ close to the model and the data
- PYTHIA for γp → φX inclusive larger, but contributes little at small K angles
- PYTHIA: φ decay is simulated isotropically (not helicity-based). No significant effect on the K angular distribution is observed.

K_L inclusive production in PYTHIA

KLF Experiment

E.Chudakov

- Only one measurement on inclusive K_L photoproduction at E_γ ≤ 20 GeV: SLAC at 20 GeV (*Abe et al PRD 32, 2869 (1985)*)
- PYTHIA at 20 GeV compared to the SLAC measurement *K_L* and *K_S* are produced at the same rate
 - $\Lambda + X$ close to experiment
 - $K_L + X$ (or $K_S + X$) 40% higher than experiment
 - $\Lambda K_S + X$ twice higher than experiment

Reaction	E_{γ}	$\sigma, \mu b$	
	GeV	Experiment	PYTHIA
$\gamma + p \rightarrow K_L + X$	20	9.7±0.3	15.0
$\gamma + p \rightarrow \Lambda + X$	20	5.6±0.2	6.3
$\gamma + p \rightarrow \Lambda K_S + X$	20	1.13±0.06	2.0

PYTHIA may overestimate K_L production by a factor 1.5 -2

 γ , GeV KLF: K_L production and transport

K_L production and its angular dependence

K_L projection to the cryo target

K_l flux at the cryo target

Photon angular distribution is dominated by multiple scattering of the beam in the radiator.

100

3.0

1500 1000

500

٥

Model: uniformly distributed radiation point

R. cm Photon rates for $E_{\gamma} > 3.0$ GeV, $r_{\gamma}(Be) < R$ #1 - Richard's calculator #2 - Used model

Transport

- Cryo target is seen as a fixed solid angle from any point in the Be target
- The elliptical aperture does not obstruct kaons
- Decays: assigned weight $\exp(-(24 \text{m}/15 \text{m}) \cdot m_K/p_K)$
- 27% K_L go through W plug

Eberhard et al, NIMA, 350 (1994), calculations for 0.35-2.6 GeV:

- 10 cm W at 2 GeV: $0.23 \Rightarrow \ell_{abs}=6.8$ cm
- 16 cm Cu at 2 GeV: $0.27 \Rightarrow \ell_{abs} = 12.2$ cm
- For 90/10% W/Cu 16.5 g/cm³ labs=7.8 cm

E.Chudakov KLF Experiment

2.0 50% 57% 1.5 35% 42% 1.0 21% 25% E4500 -4000 RMS 3500 3000 R2500 2000

Rate #1

4.0 THz

75%

Absorption: further studies needed

Rate #2

4 0 THz

80%

KLF: K₁ production and transport

Summary

- *K_L* production simulated using:
 - A data-based model for $\gamma p \rightarrow \phi p$
 - PYTHIA ($E_{\gamma} > 3$ GeV) for inclusive $\gamma p \rightarrow K_L X$ PYTHIA may overestimate the inclusive production by a factor 1.5 - 2
- K_L flux on the cryo target was evaluated taking into account absorption in the W plug and decays:
 - 3.3 kHz from $\gamma p \rightarrow \phi p$
 - 14 kHz from PYTHIA $\gamma p \rightarrow K_L X$
 - 7 10 kHz considering the PYTHIA's uncertainty
 - Inclusive production also populates low K_L momentum range more than ϕ production
 - Other uncertainties: the absorption model. Further studies needed.

9/9

