

Trigger Configuration

A. Somov, Jefferson Lab

KLF Readiness Review

August 28, 2024

GlueX Level-1 Trigger

Detectors which can be used in the Level-1 trigger:

Forward Calorimeter	(FCAL)
Barrel Calorimeter	(BCAL)
Start Counter	(SC)
Time of Flight	(TOF)
Pair Spectrometer	(PS)
Tagger	(TAGH)

(Energy deposition)
(Energy deposition)
(Count hits)
(Count hits)
(Coincidence of hits)
(Count hits)

• Trigger algorithm based on measurement of energies in FCAL and BCAL

 $E_{BCAL} = A + B \bullet E_{FCAL}$

- Coincidence of calorimeters with
 Start Counter (SRC experiment)
- Trigger based on TOF and Calorimeters (CPP/NPP experiment)

Trigger Performance

• Trigger rate in production runs about 70 kHz

• Data rate about 1.4 GB/sec

KL Trigger Simulation

- Geant4 detector simulation
 - modify geometry of the LH2 target cell, add ECAL
- Study detector response for two types of beamline backgrounds: neutron and photons
 - use energy spectra and profiles at the target to generate background particles; input to Geant4 simulation
- Evaluate trigger efficiency for physics decay of interest

 charged particles in the final state (produced at large polar angles, see talks..) (may add a table with decay channels)

Consider to use triggers based on the energy depositions in the calorimeters. - lower energy thresholds below MIP energy (similar to the SRC experiment)

Main Sources of Background

- Simulated using MCNP, Fluka, and Geant
- Integrated flux: $6.6 \cdot 10^5$ n/s on the target
- Simulated using MCNP, Fluka, and Geant
- Integrated flux: $2 \cdot 10^8 \gamma / s$ on the target

Uniform distribution of BG particles over the target face

Detector Response Induced by Charged Particles

Energy deposition in scintillator paddles

Background Rates

Background	Rates in the sub-detectors (kHz)			
	BCAL	ECAL/FCAL	BCAL + ECAL /FCAL	Start Counter
Neutrons	17.2	14.1	30.8	44.2
Photons	>> 1	>>1	>>1	5.8 x 10 ³

• Trigger energy thresholds in the calorimeters:

 $E_{BCAL, ECAL} > 20 \text{ MeV}, E_{FCAL} > 130 \text{ MeV}$

 $E_{BCAL} + E_{BCAL} > 0.1 \text{ GeV}$

• Exclude two ECAL inner rings from the reconstruction (12 x 12 cm)

Background Rates

Background	Rates in the sub-detectors (kHz)			
	BCAL	ECAL/FCAL	BCAL + ECAL /FCAL	Start Counter
Neutrons	17.2	14.1	30.8	44.2
Photons	>> 1	>>1	>>1	5.8 x 10 ³

Neutron background

- large cross section of np scattering process

Photon background

- low-energy photons
- large Compton cross section
- produce hits in the start counter
- almost no energy deposited in the calorimeters

Detector Response Induced by Background

Neutron background

Photon background

Trigger Efficiencies

Channel	Efficiency (%)
KL + p -> K ⁺ + n	98.1
$KL + p \rightarrow Ks + p$ ($K_{s} \rightarrow \pi^{+} \pi^{-}$)	99.6
KL + p -> π^+ + Λ	99.4
$KL + p \rightarrow K^{+} + \Xi (\Xi \rightarrow \Lambda + \pi^{0})$	100
$KL + p \rightarrow K^*(892) + p (K^* \rightarrow K^+ + \pi^-)$	99.7

The trigger efficiency calculation:

- all particles were required to be reconstructed in the detector

The trigger efficiency is almost 100 %

- allow for the optimization of trigger thresholds

Detector Response Induced by Physics Channels

A. Somov KLF Readiness Review

Total Trigger Rate & Data Rate

- The trigger rate is dominated by neutron background and constitutes about 30 kHz
- The contribution from KL p interactions:
 - total KL p cross section ~6 mb

- the upper limit on the trigger rate (assume that accept all KL interactions) $N_{Int} = N_{KL} \cdot N_{Prot} \cdot \sigma = 3 \cdot 10^4 \cdot 1.7 \cdot 10^{24} \cdot 6 \cdot 10^{-27} = 300 \text{ s}^{-1}$

- The GlueX detector can operate at a significantly higher rate of up to 70 kHz
- The upper limit on data rate (base on the GlueX data) is 700 Mbps (Note: the rate may be smaller due to the smaller event size)

Backup

Level-1 Trigger Electronics (operated at 250 MHz)

Jefferson Lab A.Somov

Copper Ribbon Cabl (32bits @ 250 MHz)

Custom Designed Boards at JLAB

Flash ADC , 250 Msps (FADC)

- 16 channel, 12 bits, digital pipeline
- sums amplitudes from 16 channel
- transfer energy sums or hit patterns to the CTP

Cate Trigger Processor (CTP)

- sums energies from fADC's
- transfers date over optical cables to SSP (10 Gbps capability)

SubSystem Processor (SSP)

-sums energies received from CTP's

Global Trigger Processor (GTP)

- collects data from 8 SSP's
- runs trigger equations

Trigger Supervisor (TS)

- manages triggers
- distributes clocks, triggers, sync to crates TI TD

Trigger Interface (TI)

Trigger Distribution (TD)

Signal Distribution (SD)

PrimEx Production: Spring 2019

Typical trigger rates for PrimEx production:

Total:	23	kHz
CCAL & FCAL:	17.7	kHz
FCAL:	1.2	kHz
PS:	5.5	kHz

Live time: 99 %