

Simulation and Reconstruction of $K_L + p \rightarrow K_s + p$ and $K_L + p \rightarrow K^+ + n$ using GlueX tracker and KLF software.

Vitaly Baturin, ODU, 08/29/2024

Outlook

- Simulated Detector performance: dE/dx vs. momentum etc.
- Reconstruction of $K_1 + p$ and $K^+ + n$ final states:

 $K_L + p \rightarrow K_s + p$ at **low/high** beam momenta.

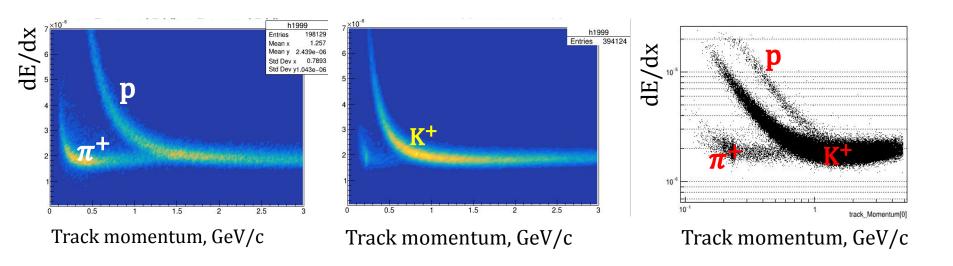
 $K_L + p \rightarrow K^+ + n$ at **low/high** beam momenta.

- Backgrounds.
- Conclusion.

Identification of final particles in

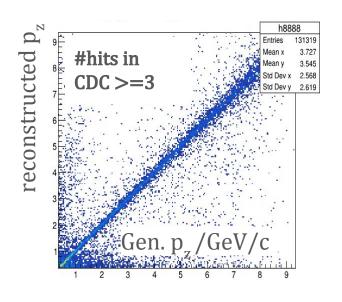
$$K_L + p \rightarrow K_s + p$$
 and $K_L + p \rightarrow K^+ + n$

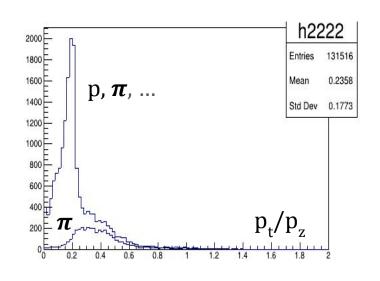
Hadronic decays, lifetimes, and detector dimensions.


$$K_s \rightarrow \pi^+ \pi^-$$
 69.2 % $c\tau = 2.9$ cm => decays mostly inside LH2 target and close to it. $\to \pi^0 \pi^0$ 30.7 %

K⁺→
$$\pi^+\pi^+\pi^-$$
 5.6 % c τ =371.2 cm =>K⁺ almost "stable" within the LH2 Target and CDC. → $\pi^+\pi^0$ 20.7 %

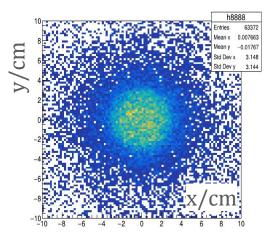
- K_s +p reconstruction: via $\pi^+\pi^-$ tracks; $EM(\pi^+\pi^-)$ for K_s and $MM(\pi^+\pi^-)$ for proton.
- K^+ +n reconstruction: via K^+ -track and $MM(K^+)$ for neutron.
- Using dE/dx in CDC.

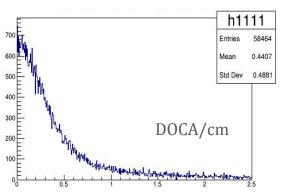

Example. dE/dx in CDC of Gluex Detector .vs. particle momentum for $K_L + p \rightarrow K_s + p$ and $K_L + p \rightarrow K^+ + n$

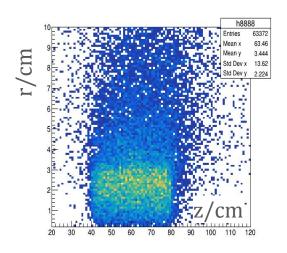


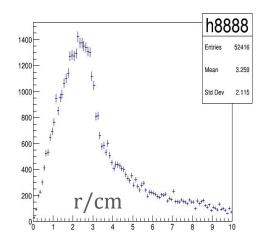
- Good pion-proton separation below ~ 1.2 GeV/c (left plot).
- Pion-kaon separation is good below ~ 0.6 GeV/c (middle plot).
- Kaon-proton separation is good below ~ 1 GeV/c (right plot).

Example. Reconstructed momenta and angular distribution in $K_L + p \rightarrow K_s(\pi^+\pi^-) + p$.

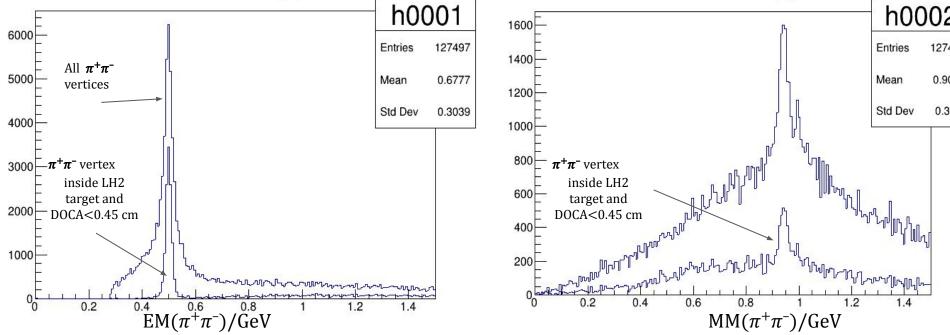





Good reconstruction at all generated momenta.

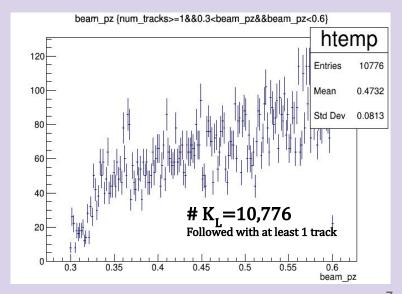


Example. Reconstruction of $\pi^+\pi^-$ vertex for $K_L^+p \to K_s^-(\pi^+\pi^-) + p$.



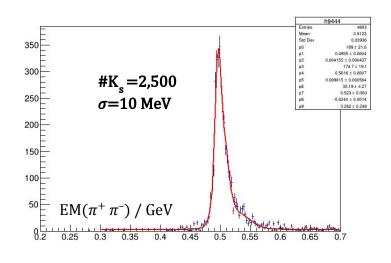
- LH2 target sized in cm as $r \times z = 3$ cm $\times 40$ cm.
- LH2 target is well reproduced by the $\pi^+\pi^-$ vertex coordinates.
- Diffuse area around r=3 cm is of 1 cm (=>sigma \sim 0.25 cm).
- Long exponential r-tail is due to K_s lifetime ($c\tau$ =2.9 cm)

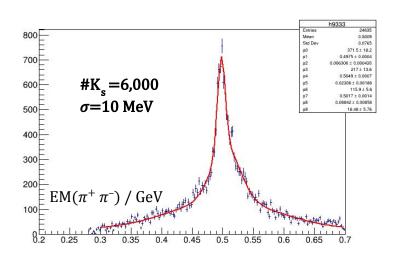
Example. Effect of $\pi^+\pi^-$ vertex in $K_L^+p \to K_s^-(\pi^+\pi^-)+p$. $MM(\pi^+\pi^-)$ and $EM(\pi^+\pi^-)$ inside LH2 target.


• EM($\pi^+\pi^-$) resolution is obviously better inside the LH2 target while the background is significantly lower.

Reconstruction of $K_L^+p \to K_s^-(\pi^+\pi^-)+p$ at K_L^- momentum (0.3,0.6) GeV/c. Effect of $\pi^+\pi^-$ vertex.

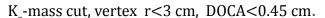
Hadronic decays and lifetimes

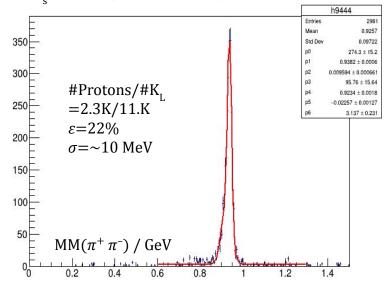

$$K_s \to \pi^+ \pi^-$$
 69.2 % $c\tau = 2.9 \text{ cm}$
 $\to \pi^0 \pi^0$ 30.7 %



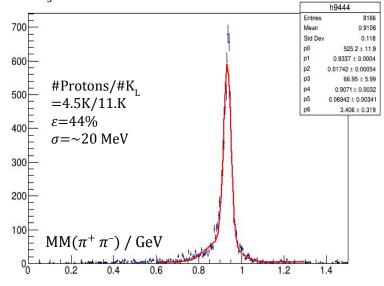
Effect of vertex on $K_s(\pi^+\pi^-)$ reconstruction in $K_L^+ p \to K_s(\pi^+\pi^-) + p$ at K_L^- momentum (0.3,0.6) GeV/c.

Inside LH2 target r<3 cm, DOCA<0.45 cm

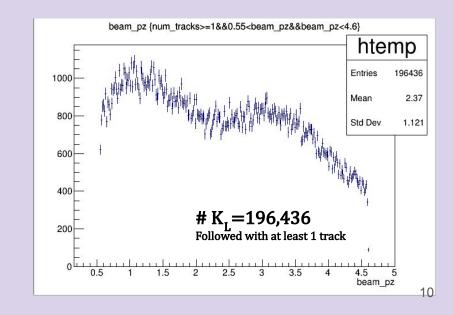

No vertex cuts



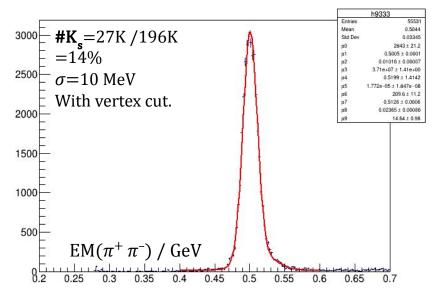
- With **vertex cuts** (left) Rec. Eff. $\sim 25\%$ (=2500/11000), while the sensitivity (=peak/pedestal) = ~ 100 .
- No cuts (right) $\sim 50\%$ (=6000/11000); the sensitivity ~ 10 times lower.

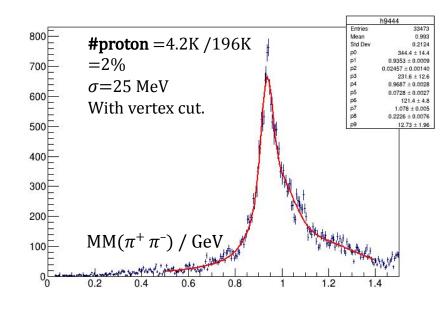


Effect of $\pi^+\pi^-$ vertex on **proton** reconstruction in $K_L^+p \to K_s(\pi^+\pi^-)+p$ at beam momentum (0.3,0.6) GeV/c.

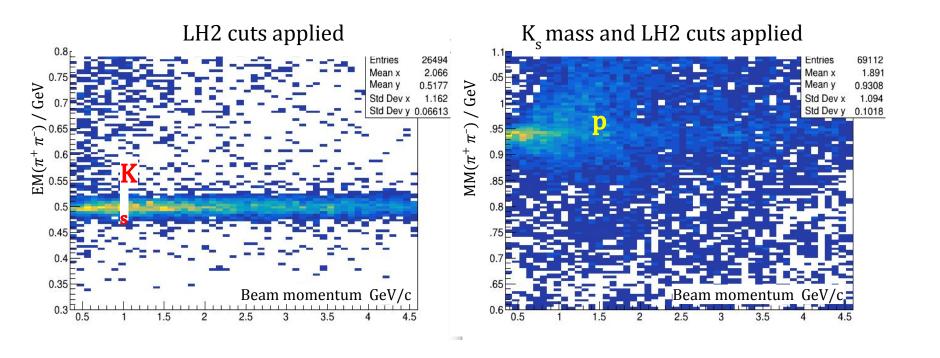

 K_s -mass cut via $EM(\pi^+\pi^-)$. No vertex cuts.

- Inside LH2 reconstruction efficiency of proton drops from ~44% to ~22%.
- Little change of the background, but better MM resolution.



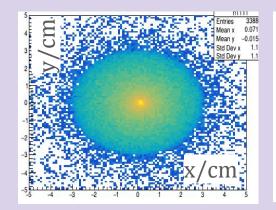

Effect of $\pi^+\pi^-(K_s)$ vertex reconstruction $K_L^+p \to K_s^-(\pi^+\pi^-)+p$ at high K_r^- beam momenta (0.55,4.55) GeV/c.

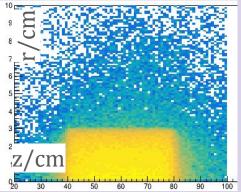
Reconstruction of K_s and p in $K_L + p \rightarrow K_s + p$ at K_L momentum (0.55,4.55) GeV/c. Vertex cuts.



• In wide domain of beam momentum Reconstruction Efficiencies are $\sim 14\%$ for K_s and $\sim 2\%$ for protons.

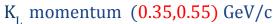
Reconstruction of K_s and p in $K_L + p \rightarrow K_s + p$ at K_L momentum (0.35,4.55) GeV/c. Effective and Missing mass of $\pi^+\pi^-$ pairs vs beam momentum.

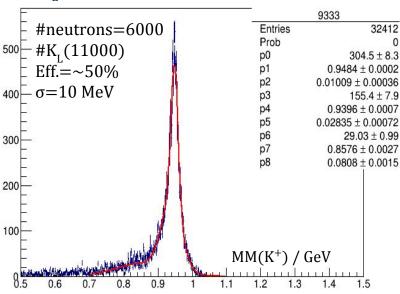




Reconstruction of K^++n state in $K_L^++p \to K^++n$ at K_L^- momentum (0.35,0.55) GeV/c.

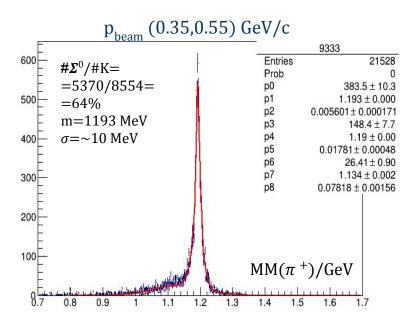
Hadronic decay


$$K^+ \rightarrow \pi^+ \pi^+ \pi^-$$
 5.6 % c τ =371.2 cm ("stable")
 $\rightarrow \pi^+ \pi^0$ 20.7 %



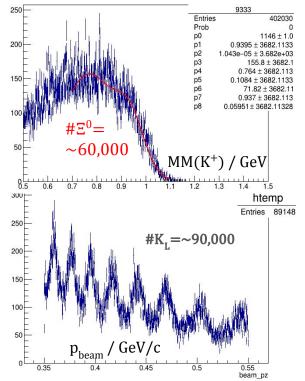
Reconstruction of neutron in $K_L + p \rightarrow K^+ + n$ with vertex cuts.

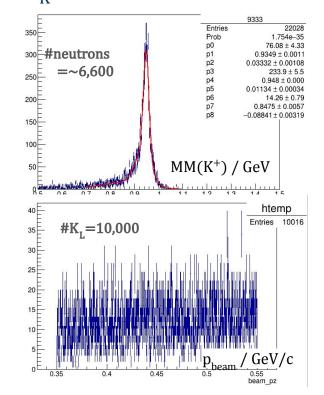
- Reconstruction efficiency of neutrons \sim 50%.
- MM resolution ~10 MeV.



Backgrounds to $K_L + p \rightarrow K^+ + n$

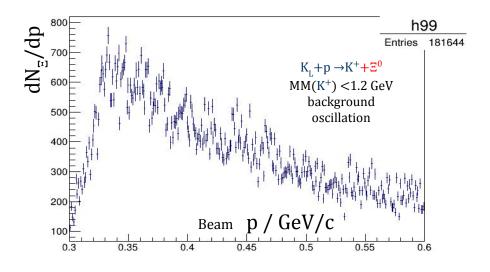
- 1. $\mathbf{K}_{\mathbf{L}} + \mathbf{p} \rightarrow \pi^{+} + \Sigma^{0}$ (1192).
- 2. Beam leak from other halls.


Background reaction $K_L + p \rightarrow \pi^+ + \Sigma^0$ (1192)



Well separated from proton and neutron MM peaks at low beam momenta.

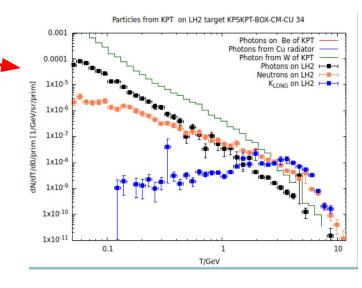
MM(K⁺)and beam leak from other halls (left) vs normal Hall D beam (right) $K_I + p \rightarrow K^+ + \Xi^0$ at $0.35 < p_K < 0.55$ GeV/c.



- No structures in Missing Mass of K⁺!
- At $p_{beam} = 0.45$ GeV/c the "leak" /"beam" ratio = $\sim 100/10 = \sim 10$; we expect ~ 2 (factor 5).
- The ratio of neutron_peak to leak of " Ξ^0 " =~300/75=~4; we expect ~5*4=20, i.e. ~5% background.

 $K_L + p \rightarrow K^+ + \Xi^0$ background oscillation caused by beam leak.

• The background part shows oscillations (10% amplitude) due to beam leak.


What to do with beam leak background?

- 1. FLUKA shows that minum energy of K $_{L}$ at LH2 target T=0.1 GeV. => K_{L} momentum p_{K} = 0.33 GeV/c
 - $=> \beta_{\kappa} = p_{\kappa} / (T + m_{\kappa}) = 0.33 / 0.597 = 0.554$

 $TOF_{\kappa} = 2400 [cm]/(30 [cm/ns]*0.554) = 144 ns$

 $TOF_{v} = 2400 [cm]/(30 [cm/ns]*1.000) = 80 \text{ ns}$

- 2. The difference TOF_{K} TOF_{γ} = **64 ns**, therefore all **beam** K_{L} 's with p>0.33 GeV/c do **fit into (0,64) ns** interval!
- 3. **Provided 128 ns** between bunches the following (64,128) ns interval is **filled by beam leak** only. Therefore this interval may be used to **permanently measure**/subtract such **background**.

CONCLUSION

Final state	Efficiency / Resol.	Efficiency / Resol.
K _L beam mom.	0.3-0.6 GeV/c	0.5-5.0 GeV/c
→K _s +	53 % / 10 MeV	14 % / 20 MeV
$\rightarrow K_s + p$	44 % / 20 MeV	2 % / 25 MeV
→K ⁺ +n	50 % / 15 MeV	6 % / 50 MeV
$\rightarrow \pi^+ + \Sigma^0$	64 % / 10 MeV	18 % / 15 MeV

- GlueX CDC is an **ideal detector** at K_L beam momentum (0.3, 0.6) GeV/c.
- Average **reconstruction efficiency** $\sim 50\%$ in this region.
- Advantage of $K_L^+p \to K_s^-(\pi^+\pi^-)+p$ is that it has **3 charged particles** of low momenta, hence better **resolution** and **vertex** localisation; good cross check for $K_L^+p \to K^++n$.
- **Beam leak** background **does not create problems** for neutron reconstruction via MM(K⁺).