Kaon Production Target

KPT prompt Dose Eq and photon Beam at KPT.

-10 -8

y/cm

Compact Photon Source

CPS Latest Model with Segmented Absorber and Trimper at the CPS exit

Latest Model. After 1000 hr + Dose Equivalent profiles within 1' around the CPS.

Latest Model. After 1000 +1 hr Dose Equivalent profiles within 1' around the CPS.

-50

y/cm

1000

-200

-150

Bot

100

z/cm

200

300

400

1x10

100000

10000

1000

-100

- Activation at the downstream side is low.
- Service lines may be placed at the CPS exit.

Comparison with Previous CPS model with W Cylinder; No trumpet. After 1000+1hr Dose Eq.

Latest CPS model. Coil Insulation lifetime (Kapton 1.E+7 Gy) and Prompt Radiation

K-long yield vs beam energy. Week of calculations.

Next Step for Temperature Calculations.

As FLUKA export to "OPEN SCAD" does not work correctly let's

1.Include Magnet design from the drawing with external dimensions of Iron Yoke

$$box(x:X,y:Y,z:Z) = box(-16:16,-20.4:20.4,-35:292)$$

2. include WCu shield as a difference of two box(x:X,y:Y,z:Z):

WCu Shield = box(-21:21,-25:25,-40:355)-box(-16:16,-20.4:20.4,-35:292)

Lead Shield = box(-50:50,-50:50,-44:356)-box(-21:21,-25:25,-40:355)

Bor-Polyeth = box(-65:65,-65:65,-55:365)-box(-50:50,-50:50,-44:356)

Lead....Skin = box(-70:70,-70:70,-60:370)-box(-65:65,-65:65,-55:365)

After 1000 hr of operation Dose Equivalent in and around the KPT.

