Kaon Production Target

KPT prompt Dose Eq and photon Beam at KPT.

$1000+1 \mathrm{Hr}$ Dose [pSv/s] around KPT CPSKPTELL080822TRASH 71

1 Day Dose eq arounf KPT [pSv/s] CPSKPTELLO80822TRASH 24

1 Week Dose Eq [pSV/s] CPSKPTELL080822TRASH 26

1 month Dose Eq [pSv/s] CPSKPTELLO80822TRASH 30

Compact Photon Source

CPS Latest Model with Segmented Absorber and Trimper at the CPS exit

Latest Model. After $1000 \mathrm{hr}+$ Dose Equivalent profiles within 1' around the CPS.

1 Hr Dose $\mathrm{Eq}[\mathrm{pSv} / \mathrm{s}$] black $=2 . \mathrm{E}+5$ CPSKPTELLO80822TRA 71

1Week Dose Eq. [pSv/s] black=2E+4 CPSKPTELLO80822TRA 26

1Day Dose Eq [pSv/s] black=1.e+5 CPSKPTELLO80822TRA 24

Prompt Dose Eq. [GeV/g/e] CPSKPTELLO80822TRA 53

Latest Model. After 1000 +1 hr Dose Equivalent profiles within 1' around the CPS.

Comparison with Previous CPS model with W Cylinder; No trumpet. After 1000+1hr Dose Eq.

1 Hr Dose Eq downstr. CPS, $370<z / \mathrm{cm}<400|\mathrm{x} / \mathrm{cm}|<20 \quad \mathrm{~B}=.24 / .25 / .22 \mathrm{~T}$ CPSKPTELLO80822TF

Latest CPS model. Coil Insulation lifetime (Kapton 1.E+7 Gy) and Prompt Radiation

K-long yield vs beam energy. Week of calculations.

- The yield of K-longs at 24 GeV is ~ 5 times higher
- Area :
$\mathrm{d}=20 \mathrm{~cm}$ vs $\mathrm{d}=6 \mathrm{~cm}$ for Target H_{2}
- Integral Under P-spectrum at 24 Gev $\mathrm{S}=\sim 1 . \mathrm{E}-9\left[\mathrm{~K}_{\mathrm{L}} / \mathrm{e} / \mathrm{GeVc}^{-1}\right]^{*} 10\left[\mathrm{GeVc}^{-1}\right]=$

$$
=1 . \mathrm{E}-8\left[\mathrm{~K}_{\mathrm{L}} / \mathrm{e}\right]
$$

- Counting rate
$\mathrm{dK}_{\mathrm{L}} / \mathrm{dt}=\mathrm{S}^{*} \mathrm{de}^{-} / \mathrm{dt}=$
$=1 . \mathrm{E}-8\left[\mathrm{~K}_{\mathrm{L}} / \mathrm{e}\right]^{* 3} \cdot \mathrm{E}+13[\mathrm{e} / \mathrm{s}]^{*}(6 / 20)^{2}=$
$=\sim 3 . E+4\left[K_{\mathrm{L}} / \mathrm{s}\right]$.

Next Step for Temperature Calculations.

As FLUKA export to "OPEN SCAD" does not work correctly let's
1.Include Magnet design from the drawing with external dimensions of Iron Yoke
box(x:X,y:Y,z:Z) = box(-16:16,-20.4:20.4,-35:292)
2. include $W C u$ shield as a difference of two box ($x: X, y: Y, z: Z$):

WCu Shield $=\operatorname{box}(-21: 21,-25: 25,-40: 355)-\operatorname{box}(-16: 16,-20.4: 20.4,-35: 292)$
Lead Shield $=$ box $(-50: 50,-50: 50,-44: 356)$-box $(-21: 21,-25: 25,-40: 355)$
Bor-Polyeth $=\operatorname{box}(-65: 65,-65: 65,-55: 365)-\operatorname{box}(-50: 50,-50: 50,-44: 356)$
Lead....Skin $=$ box(-70:70,-70:70,-60:370)-box(-65:65,-65:65,-55:365)

After 1000 hr of operation Dose Equivalent in and around the KPT.

1 Hr Dose Eq [pSv/s] CPSKPTELLO80822TRA 71

1Day Dose Eq [pSv/s] CPSKPTELL080822TRA 24

1Week Dose Eq, [pSv/s] CPSKPTELL080822TRA 26

1Month Dose Eq pSV/s[] CPSKPTELLO80822TRA 30

