THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$K_L + p \rightarrow \pi^+ + \Lambda$

MARSHALL B. C. SCOTT

HTTPS://WWW.LINKEDIN.COM/IN/MARSHALL-SCOTT-PH-D-17AB191B9

KL4 RXN AND GENERATING STEPS

- KI4 : K⁰_L+ p $\rightarrow \pi^+$ + A $-\Lambda \rightarrow$ p + π^- (63.9%) ; Current priority $-\Lambda \rightarrow$ n + π^0 (35.8%)
- Backgrounds : (Primary) $K^0_L + p \rightarrow \pi^+ + \Sigma^0$, (Secondary) $K^0_L + p \rightarrow K^+ + \Xi^0$
- Generated histograms/root files (Monitoring Histograms, ReactionFilter, mcthrown_tree)
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=monitoring_hists foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=ReactionFilter –PReaction1=10_14__8_18 foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=mcthrown_tree foo_smeared.hddm

AP REFRESHER

- The Λ is polarized and its polarization can be induced from the angle the decay proton in the Λ center of mass makes with the beam-Λ normal.
 - SLAC defines its normal as : $K_L \ X \ \pi^+$
 - HERMES defines its normal as : $K_L X \Lambda$
- In the absence of an X hadronic remnant, the two normal unit vectors are opposite of each other, i.e., K_L X π⁺ = K_L X Λ.

3

- $K_L = \Lambda p_{rest} + \pi^+ + X_{remnant}$ • $K_L X \pi^+ \rightarrow (\Lambda - p_{rest} + \pi^+ + X_{remnant}) X \pi^+ \rightarrow \Lambda X \pi^+ + X_{remnant} X \pi^+$
- $aP = 3 < \hat{p}_{\Lambda cm} \cdot \hat{n} >= 3 < \cos \theta_{pn} > (aP \text{ for a } 4\pi \text{ detector})$ - aP for a detector that is not 4π is defined as $< \cos \theta_{pn} > / < \cos \theta_{pn}^2 >$
- BNL has another way of calculating aP : aP = 2(N₊ N₋)/(N₊ + N₋)
 - +/- denotes events with $\cos\theta_{pn} > 0$ and $\cos\theta_{pn} < 0$, respectively.

MEAN AP n = K₁ X π⁺ and 0.2 < -t < 1.0 GeV²

- The mean aP for the Thr. and Rec. are plotted using the SLAC, BNL, and HERMES definitions with the n = K_L X π⁺.
- The aP measured by SLAC is also shown.
- Since HERMES and SLAC are the same using this normal, the HERMES overlaps the SLAC.
- The Rec. events matched with the Thr. events have the same aP.

4

AP RESULTS 2 n = K_L X Λ and 0.2 < -t < 1.0 GeV²

 The results for BNL and HERMES are plotted to the right for the Thr. and Rec.

• Here $n = K_L X \Lambda$.

AP : THR. TREE VS. RECONSTRUCTED Thrown tree != Reconstructed

- Plots to the left show the mean aP in each thrown beam momentum bin for the Thrown tree and Reconstructed distributions.
- The BNL and HERMES aP definitions are depicted.
- The last column shows the differences between the Thrown and Reconstructed distributions.
- From the results, it is clear that the reconstruction process induces a strong polarization.
- All following plots use n = K_L X Λ, have no t cut, and have W < 3.

INIVERSIT

WASHINGTON, DC

COSINE DISTRIBUTIONS

- The plots on the right show the cosine of the angle between the proton in the lambda center of mass and the normal.
- This is also the aP in the HERMES definition.
- The plots show that the distortion the reconstruction has and the efficiency decreases as |cos(θ)| decreases.

Jefferson Lab

7

N and P $_{\Lambda}$

- The top two plots show the components of the normal for the Recon. and Thrown Tree.
- The top two plots show the components of the proton in the lambda center of mass for the Recon. and Thrown Tree.
- Both sets of plots illustrate that the reconstructed and thrown have similar shapes.

Sources of Difference

- The top two plots show the components of p_{Acm}•n for Recon. and Thrown Tree.
- The top two plots show the components of p_{∧cm} × n for Recon. and Thrown Tree.
- Every comparison plot shows a stark difference between the Rec. and Thrown tree, save for the z component of p_{Acm}•n.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Backup Slides