Meeting 06/20/23

Homework from Meeting 06/12/23

1. PDE + Activation around CPS with 2.5 mm beam sigma.
2. Simulations of CPS with 3.5 mm beam sigma.
3. CPS material budget/cost.
4. CPS optimisation.

Next week calculations (request from Hovanes)

1. Simulations of CPS with 1.5 mm beam sigma (background, magnet).
2. Simulations with 1 mm horizontal shift (background, temperature).

Beam 2.5 mm . PDE and Activation.

Prompt Dose Equivalent Map (rem/hr) < 500 ; beam $2.5 \mathrm{~mm} ; \mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$

Prompt Dose Equivalent (rem/hr) at r=150-180 cm from beam 2.5 mm .

PDE rem/h $\mathrm{N}=11.25 \mathrm{E}+6$ top $1 / 4$-sph. bentcoil-65-m23ref1 91

PDE rem/h $\mathrm{N}=11.25 \mathrm{E}+6$ floor profile bentcoil-65-m23ref1 91

- At beam 2.5 mm PDE meets the specification of the PAC48 proposal: $\mathrm{PDE}<25 \mathrm{rem} / \mathrm{h}$ at floor level $1.5-1.8 \mathrm{~m}$.

Activation $1000+1 \mathrm{hr}$ is below $5 \mathrm{mrem} / \mathrm{hr} . \mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$. Beam 2.5 mm .

US+0' $1000+1$ hr [mrem/hr] $\mathrm{N}=36 . \mathrm{E}-5$ bentcoil- $65-\mathrm{m} 23$ ref2 24

Hot spot $1000+1 \mathrm{hr}[m r e m / \mathrm{hr}] \mathrm{N}=36 . \mathrm{E}$-5 bentcoil- 65 -m23ref2 24

Activation $1000+1 \mathrm{hr}[\mathrm{mrem} / \mathrm{hr}] \mathrm{N}=36 . \mathrm{E}-5$ bentcoil-65-m23ref2 24

Rad+1' $1000+1 \mathrm{hr}[\mathrm{mrem} / \mathrm{hr}] \mathrm{N}=36 . \mathrm{E}-5$ bentcoil-65-m23ref2 24

DS $+1^{\prime} 1000+1$ hr [mrem/hr] $\mathrm{N}=36$. E-5 bentcoil- $65-$ m23reff 24

PerMag 1000+1 hr [mrem/hr] $\mathrm{N}=336$. E-5 bentcoil-65-m23ref 24

Beam 3.5 mm . PDE and Activation.

$\mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n} .}$ Prompt $\mathrm{DE}<25 \mathrm{rem} / \mathrm{h}$ at $\mathrm{r}=150-180 \mathrm{~cm}$ from Beam 3.5 mm .

- At beam 3.5 mm PDE meets the specification of the PAC48 proposal: $\mathrm{PDE}<25 \mathrm{rem} / \mathrm{h}$ at floor level $1.5-1.8 \mathrm{~m}$.

Beam $\sigma=3.5 \mathrm{~mm} . \mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$. Activation $1000+1 \mathrm{hr}$ is below $5 \mathrm{mrem} / \mathrm{hr}$.

Activation $1000+1 \mathrm{hr}$ mrem/hr bentcoil-65-m23ref3 24

Max. dP/dV and Coil Lifetime. Beam $3.5 \mathrm{~mm} . \mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$.

Hot Spot z-profile bentcoil-65-m23ref3 99

- Maximal dP/dV-2.1 kW/cm ${ }^{3}$
- In Coil the PD<2.E-9 GeV/g/e => Coil LT~300 years of continuous operation.

Beam 3.5 mm .

PDE and Activation.

Shield optimization.

PDE (rem $/ \mathrm{hr}$) at $\mathrm{r}=150-180 \mathrm{~cm}$ from beam $3.5 \mathrm{~mm} . \mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$. Iron core.

- With iron core, beam 3.5 mm , PDE meets the specification of PAC48.
$1000+1 \mathrm{hr}$ Activation DE (mrem/hr) at $\mathrm{r}=150-180 \mathrm{~cm}$ from beam 3.5 mm . $\mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}^{2} \text {. Imesmen }}$. corentre to save lead.

Activation $1000+1$ hr DE top $1 / 2$ sphere bentcoil-65-m23ref4 24

- Activation is below $5 \mathrm{mrem} / \mathrm{hr}$!

Beam $3.5 \mathrm{~mm} . \mathrm{B}=0.9 \mathrm{~B}_{\mathrm{n}}$. Max. $\mathrm{dP} / \mathrm{dV}=2.5 \mathrm{~kW}$; Coil Lifetime $=300$ years.

- Prompt dose in DS coil <2.E-9 GeV/g/e.
- Coil LT ~ $\mathbf{3 0 0}$ years.

Beam 2.5 mm. PDE and Activation. "Stingrey" beam channel. Shield Optimization.

$\mathrm{R}=0.5 \mathrm{~cm}$; may be higher.
n_{b} - beam direction
$\boldsymbol{\vartheta}$-pitch angle to the tangent surface \mathbf{n}.
$\left(\mathbf{n}_{\mathbf{b}}, \mathbf{n}\right)=\sin (\alpha) \sin (\varphi)=\sin (\vartheta)$
α-beam pitch angle to the screen normal.
φ-angle between n and horiz. axis.

Comments to the video. What is the wedge effect?

1) Consider e-beam as a cylinder diameter D with uniform density; direction $\mathrm{n}_{\mathrm{b}}=(0, \sin (\alpha), \cos (\alpha))$, where α pitch angle to the beam axis.
2) For a squared or wedge-like channels the hot spot is a cross section of a cylinder with a plane. Plane orientations: $\mathbf{n}_{\mathbf{1}}=(0,1,0)$-for squared channel, or $\mathbf{n}_{\mathbf{2}}=(\pm \cos (\varphi), \sin (\varphi), 0)$ - for 2 wedge planes obtained as $\pm \varphi$ - rotation of yz-plane around z-axis.

Impact angle is determined by $\left(\mathbf{n}_{\mathbf{b}}, \mathbf{n}_{\mathbf{1}}\right)=\sin (\alpha)$ or $\left(\mathbf{n}_{\mathbf{b}}, \mathbf{n}_{\mathbf{2}}\right)=\sin (\alpha) \sin (\varphi)=\sin (\vartheta)$ - pitch to wedge plane.
3) But in both cases the intersection is an ellipse with the area $S=\pi \mathrm{D} \times \mathrm{L}$, where L - ellipse large axis.
4) Pitch angle $\vartheta \sim D / L$.
5) Maximum L is constrained by the length of the beam channel ($L<L_{c} \sim 2 \mathrm{~m}$), or the wedge ($L<L_{w} \sim 0.5 \mathrm{~m}$).

- Therefore $\max \mathrm{dP} / \mathrm{dS} \propto \theta \propto \mathrm{L}^{-1}$ for the wedge is $\mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{w}}=4$ times higher.

$B=B_{n^{\prime}}$ "stingray" chanel $d=1 \mathrm{~cm}$, 4 layers of Lead. More W-shield for DS Coil.

- PDE meets requirement of PAC48 for the floor level.

$1000+1 \mathrm{hr}$ Activation DE (mrem/hr) ; beam $2.5 \mathrm{~mm}, \mathrm{~B}=\mathrm{B}_{\mathrm{n}}$. Iron core. "Stingrey" channel.

PDE mrem/hr bentcoil-65-m23ref6 24

PDE mrem/hr $\mathrm{N}=36 . \mathrm{E}-5$ bentcoil-65-m23ref6 24

PDE mrem/hr bentcoil-65-m23ref6 24

- Activation is below 5 mrem/hr.

Beam $\sigma=2.5 \mathrm{~mm} . \mathrm{B}=\mathrm{B}_{\mathrm{n}^{.}} \mathrm{dP} / \mathrm{dV}<1.2 \mathrm{~kW}$; Coil Lifetime ~ 300 years.
Ds Coil $\mathrm{GeV} / \mathrm{g} / \mathrm{e}>2$.E-8 bentcoil-65-m23ref6 97

Ds Coil $\mathrm{GeV} / \mathrm{g} / \mathrm{e}>2 . \mathrm{E}-8$ bentcoil-65-m23ref6 97

CPS Weight and Cost estimates.

1	Pb Skin	$\mathrm{g} / \mathrm{cm} 3$	z	dZ	R	Xint	\times-fct	V/cm3	P/T	P/T	Cost	
2	ski5 z.dz.r	11.4	40	220	99	88.7	0.65	$7.60 \mathrm{E}+5$	8.7			
3	ski1	11.4	15	290	90	78.6	0.66	1.03E+6	11.7			
4	ski2	11.4	-6	351	80	66.5	0.69	1.13E+6	12.9			
5	ski3	11.4	-30	415	70	54	0.72	1.22E+6	13.9			
6	ski4	11.4	-56.5	476.5	60	40.5	0.76	$4.11 E+6$	-37.0			
7	V_tot				0			$8.25 E+6$	10.2	10.2	\$50,996	
8	V_filled		g/cm3 $=$	11.4	/kg $=$	5		8.95E+5	10.2			
9	B+Polyethyl.		z	dZ	R	Xint	X-fct					
10	bor5	1.2	45	211	94	82.4	0.66	7.01E+5	0.8			
11	bor1	1.2	20	280	85	72.4	0.67	$9.48 \mathrm{E}+5$	1.1			
12	bor2	1.2	-1	341	75	61	0.70	$1.05 \mathrm{E}+6$	1.3			
13	bor3	1.2	-25	405	65	47	0.74	1.13E+6	1.4			
14	bor4	1.2	-51	467	55	33	0.80	$3.53 E+6$	-2.2			
15	V_tot				0			$7.36 \mathrm{E}+6$	2.4	2.4	\$47,278	
16	V_filled		g/cm3 $=$	1.2	/kg=	20		1.97E+6	2.4			
17	Lead Shield		z	dZ	R	Xint	X-fct					
18	les19	11.4	55	190	80	66.6	0.69	$6.14 E+5$	7.0			
19	les16	11.4	30	260	70	54	0.72	7.62E+5	8.7			
20	les15	11.4	10	320	60	41	0.76	$8.42 \mathrm{E}+5$	9.6			
21	les14	11.4	-15	385	50	24	0.84	$9.16 \mathrm{E}+5$	10.4			
22	les13	7.8	-41	448	40	0	1.00	$2.25 E+6$	3.4			
23	V_tot							$5.39 \mathrm{E}+6$	39.2	39.2	\$195,838	49
24	V_filled		g/cm3 $=$	11.4	/kg=	5		$3.58 \mathrm{E}+6$	40.8			
25	Iron Core		z	Z	dy	dx						
26	Void $\mathrm{z}, \mathrm{Z}, \mathrm{x}, \mathrm{y}$		-56.5	430	62	60		$1.81 E+6$				
27	V_tot							$1.81 E+6$				
28	V_filled		g/cm3 $=$	7.87	/kg=	4		1.48E+6	11.7	11.7	\$46,680	
29	Cu Absorber		-56.5	430	48	14		$3.27 E+5$				
30	V_tot							$3.27 E+5$				
31	V_filled		g/cm3 $=$	8.96	/kg=	20		$3.27 E+5$	2.9	2.9	\$58,585	
32	Pedestal Con.		-40	420	126	100		$5.80 E+6$				
33	V_tot							$5.80 E+6$				
34	V_filled	2.3	g/cm3 $=$	2.3	/kg=	3		$5.80 E+6$	13.3	13.3	\$39,992	
35	Platform Fe		-56.5	430	10	200		$9.73 E+5$				
36	V_tot							$9.73 E+5$				
37	V_filled		g/cm3 $=$	7.87	/ $\mathrm{kg}=$	4		$9.73 E+5$	7.7	7.7	\$30,630	
41									All	87.3	\$470,001	
42									-Pdst	74.0	\$430,008	
43									-Pltf	66.3	\$399,378	

CPS Mat.	Ton	$\mathrm{g} / \mathrm{cm} 3$	$\$ / \mathrm{kg}$
Lead	49	11.3	5
B+PE	2.4	1.2	20
Iron	12	7.8	4
Copper	2.9	8.9	$20(100, \mathrm{Tim}) ?$
Total CPS	66	-	$(+\$ 240,000)$

CPS critical sizes and shield optimization.

Consider a source of radiation (red line) and a shield around it (cylinder R,L). Stationary case.
Total power P of red line relates to $\mathrm{dP} / \mathrm{ds}$ at the cylinder surface as

$$
\mathrm{P}=2 \pi \mathrm{RL}(\mathrm{dP} / \mathrm{ds})
$$

Assume $\mathrm{dP} / \mathrm{ds}=\varrho$ is constrained by RadCon regulations to be constant at varying sizes.

$$
=>\text { for the SPS radius we write } \quad R=(P / \varrho)(2 \pi L)^{-1}
$$

For the CPS cyl. volume we write:

$$
\mathbf{V}=\pi(2 \pi)^{-2} \mathbf{L}^{-1}(\mathbf{P} / \varrho)^{2}
$$

For a spherical case

$$
\mathrm{V}=(4 \pi / 3)(4 \pi)^{-3 / 2}(\mathrm{P} / \varrho)^{3 / 2}
$$

And we find that for constrained $\mathrm{dP} / \mathrm{ds}=\varrho$ at CPS surface
CPS volume
Temperature
Magnet power
Max. power dep.
$\mathrm{V} \propto \mathrm{L}^{-1}$
$\mathrm{T}^{0} \propto \mathrm{~L}^{-1}$ (from the previous presentations)
$B \propto L^{-1}$

- Thus, further increasing CPS length L we may save on volume, weight, and magnet cost.
- Electron beam current is limited by Absorber temperature.
- Photon beam intensity may be significantly higher.

If copper cost is $\$ 100 / \mathrm{kg}$ we may replace Cu with Fe or Pb in some locations

Shield optimization requires FLUKA and Temperature calculations.

FLUKA Absorbed Dose (rad/Gy) and Dose Equivalent (rem/Sv).

Equivalent Dose definition.

Calculating equivalent dose from absorbed dose;

$$
H_{T}=\sum_{R} W_{R} \cdot D_{T, R}
$$

where
H_{T} is the equivalent dose in sieverts (Sv) absorbed by tissue T ,
$D_{T, R}$ is the absorbed dose in grays (Gy) in tissue T by radiation type R and W_{R} is the radiation weighting factor defined by regulation.

- Does FLUKA follow standard rules?

Absorbed dose includes neutrons.

Radiation weighting factors W_{R} (formerly termed Q factor) used to represent relative biological effectiveness according to ICRP report 103 ${ }^{[6]}$

Radiation	Energy	$\mathbf{W}_{\mathbf{R}}$ (formerly Q)
x-rays, gamma rays, beta particles, muons		1
neutrons	$<1 \mathrm{MeV}$	$2.5+18.2 \cdot \mathrm{e}^{-[\ln (E)]^{2 / 6}}$
	$1 \ldots .50 \mathrm{MeV}$	$5.0+17.0 \cdot \mathrm{e}^{-[\ln (2 \cdot \mathrm{E})]^{2 / 6}}$
	$>50 \mathrm{MeV}$	$2.5+3.25 \cdot \mathrm{e}^{-[\ln (0.04 \cdot E)]^{2 / 6}}$
protons, charged pions		2
alpha particles, fission products, heavy nuclei		20

