K⁰L CPS Meeting Dec 12, 2022

P. Degtiarenko

Original Features

- First magnet is away from high radiation
- Distance to allow main beam to get away from the photon line
- Beam entry chamber, direct cascade products not visible in the photon line
- Second magnet not used
- Essentially full energy absorption in the dump
- Dense CuW shielding material to minimize total weight

New Features

- Shorter design with higher BdL in the first magnet
- Wedge shape of the beam entry chamber to better dissipate beam power
- Combination of the shielding materials to optimize between the cost and weight (lower densities result in larger total weight)

Absorber Design Update

- The proposed solution for the Absorber combines:
 - The entrance chamber in the shape of a wedge
 - The main beam energy deposition is along the tip of the wedge
 - The first part of the photon beam channel follows the wedge chamber
 - First-order E-M cascade products in the dump chamber cannot go along the photon channel, limiting the radiation streaming along the channel
- Suggested to be built out of two left/right symmetric half-cylinders
- The entrance cavity and the photon line machined out of flat surfaces
- When assembled, the absorber operates similarly to JLab beam dumps
- Absorbs bulk of the power (currently over 98% of all CPS power)

Conceptual Design Update: CPS Shorter by ~50%

Power deposition along the CPS core

Dose Rates inside the CPS along Beam

Vertical plane of central CPS (x from -2 to 2 mm)

Over 98% of the full CPS power left in absorber

- ~Uniform along z
- Concentrated at the wedge tip
- No first-order cascade products go along the photon beam line
- Symmetric power deposition in x,y below and around the tip

Power density around the tip of the wedge

Maximum power density, y < -2 cm , r_w < 0.25 mm

- Max ~7 kW/cm³
- Location z ~45 cm
 Radial (around the wedge tip) distribution can be used for the temperature evaluation

Worst case temperature evaluation

- (a) Radial power density distribution
- (b) Power per radial layer of 1 cm length
- (c) Change in temperature in the neighboring layers assuming cumulative power inside
- (d) Full temperature rise from outside to the center

Online tool at https://thermal.mayahtt.com

- Using the thermal conductivity of copper:
 - k = 385 W/(m K)

Conduction Across Multilayered Isothermal Cylinder

Outer Temperature =
$$T_0 - T_n = q * (\sum (ln(r_i/r_{i-1}))/(2 * \pi * k_i * L))$$

Worst case temperature evaluation

100 Temperature relative to outer surface (C) 80 60 40 20 0 3 5 2 6 Radius around the wedge tip r (cm)

Temperature rise in absorber, worst case at z = 45 cm

 Full temperature rise from outside to the center

Bulk of power in CPS stays in Absorber (98%)

Prompt Dose Eq. Rates around the CPS

Dose Eq. Rates around the CPS

Dose Rate vs. z at the side of the CPS (150 < r < 180 cm)

Activation Dose Rate vs. z at the side of the CPS (150 < r < 180 cm)

Accumulated Doses around the CPS (10000 h)

- Under 10⁵ Gy at 10 cm from the beam, first magnet
- Under 10⁷ Gy at the strontium ferrite for the permanent magnet

Dose Accumulation

10000 hours (Gy) 90 Dose accumulation

Prompt Dose Eq. Rates Outside

 Very approximate model for the berm above the photon pipe

Photon Beam Quality at 80 m

 Presented as the dose eq. rate function of Y in a slice of X

Energy-weighted spectra of photons and e⁺/e⁻

EdN/dE per beam electron