HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Department of Physics Kent State University Kent, OH 44242 USA

July 17, 2018

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

Quark Model

- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 1 日 >

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

*l*issing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

*l*issing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

*l*issing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

*l*issing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

*l*issing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日<<10</p>

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Expected Results
- Summary and Conclusions

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

*l*issing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日<<10</p>

Quark Shell Model for Baryons

It is convenient to describe baryons with a "quark shell model" in which each quark moves in a mean field generated mainly by the gluons in the hadron. Lattice QCD calculations have shown that the predicted spectrum of excited states is *not arbitrary*; instead it is more-or-less consistent with what is expected from SU(6) symmetry.

In such models, baryons are grouped into three possible SU(6) multiplets:

$$56_S = {}^{2}8 + {}^{4}10$$

$$70_M = {}^{2}8 + {}^{4}8 + {}^{2}10 + {}^{2}1$$

$$20_A = {}^{2}8 + {}^{4}1$$

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Expected Results Summary Acknowledgment

SU(6) Multiplets in the Harmonic-Oscillator Model for Baryons*

$$N = 0 \qquad \psi(\mathbf{56}, 0^{+}) = (1s)^{3}$$

$$N = 1 \qquad \psi(\mathbf{70}, 1^{-}) = (1s)^{2}(1p)$$

$$N = 2 \qquad \psi(\mathbf{56}, 0^{+}) = \sqrt{\frac{2}{3}}(1s)^{2}(2s) + \sqrt{\frac{1}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{70}, 0^{+}) = \sqrt{\frac{1}{3}}(1s)^{2}(2s) + \sqrt{\frac{2}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{56}, 2^{+}) = \sqrt{\frac{2}{3}}(1s)^{2}(1d) - \sqrt{\frac{1}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{70}, 2^{+}) = \sqrt{\frac{1}{3}}(1s)^{2}(1d) - \sqrt{\frac{2}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{20}, 1^{+}) = (1s)(1p)^{2}$$

*D. Faiman and A.W. Hendry, PRD 173, 1720 (1968). = 🤊 🔍

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Expected Results Summary

N=3 Baryons

The eight SU(6) multiplets that are allowed in the N = 3 band are:

(56 , 1 ⁻)	(70 , 2 ⁻)	(56 , 3 ⁻)
(70 , 1 ⁻)		(70 , 3 ⁻)
(70 , 1 ⁻)		(20 , 3 ⁻)
(20 , 1 ⁻)		

and the allowed shell-model configurations are:

$$\begin{array}{ccc} (1s)^2(2p) & L = 1\\ (1s)^2(1f) & L = 3\\ \hline (1s)(1p)(2s) & L = 1\\ (1s)(1p)(1d) & L = 1, 2, 3\\ \hline (1p)^3 & L = 1, 3\\ \end{array}$$

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Expected Results Summary Acknowledgment:

5/40

- Pure hyperon states in the N = 2 (20,1⁺) multiplet cannot couple to $\overline{K}N$ via a single-quark transition operator. They will not be considered further.
- Pure hyperon states in the N = 3 (20,1⁻), (70,2⁻), and (20,3⁻) multiplets cannot couple to KN via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N = 3)

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Expected Result Summary Acknowledgment

- ► Pure hyperon states in the N = 2 (20,1⁺) multiplet cannot couple to K̄N via a single-quark transition operator. They will not be considered further.
- Pure hyperon states in the N = 3 (20,1⁻), (70,2⁻), and (20,3⁻) multiplets cannot couple to KN via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N = 3)

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Expected Resulf Summary

- ► Pure hyperon states in the N = 2 (20,1⁺) multiplet cannot couple to K̄N via a single-quark transition operator. They will not be considered further.
- Pure hyperon states in the N = 3 (20,1⁻), (70,2⁻), and (20,3⁻) multiplets cannot couple to KN via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N = 3)

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Expected Result Summary Acknowledgment

N=0 (56,0⁺) Ground-State Baryons

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

² 8	N(939)	****	
1/2+	$\Lambda(1116)$	****	
	Σ(1193)	****	Missing Resonances
	Ξ(1322)	****	

⁴ 10	$\Delta(1232)$	****
3/2+	Σ(1385)	****
	Ξ(1530)	****
	Ω(1672)	****

N=1 (70,1⁻) Negative-Parity Excited States

spin-parity undetermined

*

N(1535)

Σ(1620)

三(1690)

N(1520)

 $\Lambda(1690)$

 $\Sigma(1670)$

三(1820)

 $1/2^{-}$ $\Lambda(1670)$

²8

²8

3/2-

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Mode

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

 Image: Image: Ima	< 🗗 >	⊸र ≣⇒	- < ≣ ►	- 2	うくで

N=1 (70,1⁻) Negative-Parity Excited States

- ⁴8 *N*(1650) ****
- 1/2⁻ Λ(1800) ***
- T(1000)
 - Σ(1750) ***
 - Ξ(1950) *** spin-parity undetermined
- $\begin{array}{cccc}
 ^{4}8 & N(1700) & *** \\
 3/2^{-} & \Lambda \\ & \Sigma \\ & \Xi \\
 \end{array}$

spin-parity undetermined

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Mode

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

N=1 (70,1⁻) Negative-Parity Excited States

²10 ²1 $\Delta(1620)$ **** **** $\Lambda(1405)$ 1/2-Σ $1/2^{-}$ Ξ Ω 2**1** ²10 **** $\Delta(1700)$ **** $\Lambda(1520)$ $3/2^{-}$ $\Sigma(1940)$ *** $3/2^{-}$

> Ξ Ω

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Mode

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

N=2 (56,0⁺) Positive-Parity Excited States

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Mode

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

$\begin{array}{cccc} {}^{2}8 & N(1440) & {}^{****} \\ 1/2^{+} & \Lambda(1600) & {}^{***} \\ & \Sigma(1660) & {}^{***} \\ & \Xi \end{array}$

⁴10 Δ(1600) *** $<math>3/2^+ Σ$ ΞΩ Ω Ω

N=2 (56,2⁺) Positive-Parity Excited States

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

- - $\begin{array}{cccc} {}^{2}8 & N(1680) & {}^{****} \\ 5/2^{+} & \Lambda(1820) & {}^{****} \\ & \Sigma(1915) & {}^{****} \\ & \Xi \end{array}$

N=2 (56,2⁺) Positive-Parity Excited States

⁴ 10 1/2 ⁺	Δ(1910) Σ Ξ Ω	****	⁴ 10 3/2 ⁺	Δ(1920) Σ Ξ Ω	***
⁴ 10 5/2 ⁺	Δ(1905) Σ Ξ Ω	***	⁴ 10 7/2 ⁺	Δ(1950) Σ(2030) Ξ Ω	****

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Mode

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

◆□▼ ▲□▼ ▲□▼ ▲□▼ ▲□▼

N=2 (70,0⁺) Positive-Parity Excited States

²8 N(1710) *** ⁴8 Ν 1/2+ Λ(1810) *** $3/2^{+}$ Λ **Σ(1880)** ** Σ Ξ Ξ ²10 ∆(1750) ²1 $\Lambda(1710)$ * * $1/2^{+}$ Σ $1/2^{+}$ Ξ Ω

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Mode

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

N=2 (70,2⁺) Positive-Parity Excited States

⁴ 8	N(1880)	**	⁴ 8	N(1900)	***
1/2+	Λ		3/2+	Λ	
	Σ			Σ	
	Ξ			Ξ	

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

N=2 (70,2⁺) Positive-Parity Excited States

² 8 3/2 ⁺	N Λ Σ Ξ	² 8 5/2 ⁺	N(1860) Λ Σ Ξ	**	Collaboration Introduction Quark Model Missing Resonances PWA Formalism
² 10 3/2 ⁺	$\begin{array}{l} \Delta \\ \Sigma \\ \Xi \\ \Omega \end{array}$	² 10 5/2 ⁺	Δ(2000) Σ Ξ Ω	**	Discussion Current Data Expected Results Summary Acknowledgments
² 1 3/2 ⁺	Λ	² 1 5/2 ⁺	Λ(2110)	***	

HYPERON

SPECTROSCOPY WITH A K_L BEAM D. Mark Manley for the GlueX

Summary of Missing Resonances

(one-star states are included as "missing")

	N = 0	N = 1	N = 2
Ν	0	0	2
Δ	0	0	2
Λ	0	1	9
Σ	0	3	15
Ξ	0	3	19
Ω	0	2	8

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

PWA Formalism

- Here, we summarize some of the physics issues involved with K⁰₁p scattering.
- The differential cross section and polarization for K⁰_Lp scattering are given by

$$\frac{d\sigma}{d\Omega} = \lambda^2 (|f|^2 + |g|^2),$$
$$P\frac{d\sigma}{d\Omega} = 2\lambda^2 \text{Im}(fg^*),$$

where $\lambda = \hbar/k$, with *k* the magnitude of c.m. momentum for the incoming meson. Here $f = f(W, \theta)$ and $g = g(W, \theta)$ are the usual spin-nonflip and spin-flip amplitudes at c.m. energy *W* and meson c.m. scattering angle θ .

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Partial-Wave Expansion

▶ In terms of partial waves, *f* and *g* can be expanded as

$$f(W,\theta) = \sum_{l=0}^{\infty} [(l+1)T_{l+} + lT_{l-}]P_l(\cos\theta),$$

$$g(W,\theta) = \sum_{l=1}^{\infty} [T_{l+} - T_{l-}] P_l^1(\cos \theta).$$

- ► Here *l* is the initial orbital angular momentum, $P_l(\cos \theta)$ is a Legendre polynomial, and $P_l^1(\cos \theta) = \sin \theta \times dP_l(\cos \theta)/d(\cos \theta)$ is an associated Legendre function.
- ► The total angular momentum for T_{l+} is $J = l + \frac{1}{2}$, while that for T_{l-} is $J = l \frac{1}{2}$.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances

PWA Formalism

Current Data

Expected Results

Summary

Isospin Amplitudes

We may ignore small CP-violating terms and write

$$K_L^0 = \frac{1}{\sqrt{2}} (K^0 - \overline{K^0}),$$

$$K_S^0 = \frac{1}{\sqrt{2}}(K^0 + \overline{K^0}).$$

We have both I = 0 and I = 1 amplitudes for KN and KN scattering, so that amplitudes T_{l±} can be expanded in isospin amplitudes as

$$T_{l\pm} = C_0 T_{l\pm}^0 + C_1 T_{l\pm}^1,$$

where $T_{l\pm}^{I}$ are partial-wave amplitudes with isospin I and total angular momentum $J = l \pm \frac{1}{2}$, with C_{I} the appropriate isospin Clebsch-Gordan coefficients.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

20/40

Isospin Amplitudes (cont'd)

$$\begin{split} T(K_L^0 p \to K_S^0 p) &= \frac{1}{2} \left(\frac{1}{2} T^1(KN \to KN) + \frac{1}{2} T^0(KN \to KN) \right) \\ &- \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \\ T(K_L^0 p \to \pi^+ \Lambda) &= -\frac{1}{\sqrt{2}} T^1(\overline{K}N \to \pi\Lambda) \\ T(K_L^0 p \to \pi^+ \Sigma^0) &= -\frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) \\ T(K_L^0 p \to \pi^0 \Sigma^+) &= \frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) \\ T(K_L^0 p \to K^+ \Xi^0) &= -\frac{1}{\sqrt{2}} T^1(\overline{K}N \to K\Xi) \end{split}$$

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

- Only Σ* resonances are formed as intermediate states in K⁰₁p reactions.
- $K_L^0 p \to K_S^0 p$ is not ideal for finding missing Σ^* states that couple weakly to $\overline{K}N$ because of nonresonant KN background and because amplitude involves $\overline{K}N$ in both initial and final states.
- The inelastic 2-body reactions that can be studied with a K⁰_L beam would be better probes for finding missing Σ* states due to isospin selectivity, absence of nonresonant KN background, and fact that their amplitudes only involve KN coupling in initial state.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

- ► To search for missing Σ^* states that couple weakly to $\overline{K}N$, use production reactions such as $K_L^0 p \to \pi^+ \Sigma^{0*}$, with $\Sigma^{0*} \to \pi^0 \Lambda$, or use $K_L^0 p \to \pi^0 \Sigma^{+*}$, with $\Sigma^{+*} \to \pi^+ \Lambda$. (Note that the $\pi\Lambda$ decays establish Σ^* states (I = 1) uniquely.)
- ► To search for missing Λ^* states that couple weakly to $\overline{K}N$, use production reactions such as $K_L^0 p \to \pi^+ \Lambda^*$, with $\Lambda^* \to \pi^+ \Sigma^-$, $\Lambda^* \to \pi^- \Sigma^+$, or $\Lambda^* \to \pi^0 \Sigma^0$. (Note that the $\pi^0 \Sigma^0$ decays establish Λ^* states (I = 0) uniquely.)
- ► To search for missing Ξ^* or Ω^* states, use production reactions such as $K_L^0 p \to K^+ \Xi^{0*}$, $K_L^0 p \to \pi^+ K^+ \Xi^{-*}$, and $K_L^0 p \to K^+ K^+ \Omega^{-*}$.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

$d\sigma/d\Omega$ Data for $K_L^0 p \to K_S^0 p$

Figure: Selected data for $K_L^0 p \to K_S^0 p$ at 1660 MeV and 1720 MeV. The curves are predictions using amplitudes from our previous PWA of $\overline{K}N \to \overline{K}N$ combined with $KN \to KN$ amplitudes from SAID solution.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- K⁻p → π⁰Λ and K⁰_Lp → π⁺Λ amplitudes imply that their observables measured at same energy should be identical except for small differences due to isospin-violating mass differences in the hadrons.
- At 1540 MeV and higher, dσ/dΩ and polarization data for the two reactions are in fair agreement, as shown in the following slides.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1540 MeV and 1620 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

$d\sigma/d\Omega$ Data for $K^-p \to \pi^0 \Lambda$ and $K^0_r p \to \pi^+ \Lambda$ HYPERON D. Mark Manley for the GlueX 1760 MeV = 1840 MeV $n \rightarrow \pi^0 \Lambda$ $p \rightarrow \pi^0 \Lambda$ $K^0 p \rightarrow \pi^* \Lambda$ $K_{i}^{0} p \rightarrow \pi^{*} \Lambda$ do/dΩ (mb/sr) do/dΩ (mb/sr) Current Data

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^- p \rightarrow \pi^0 \Lambda$ (red) and $K^0_I p \rightarrow \pi^+ \Lambda$ (blue) at 1760 MeV and 1840 MeV. The curves are from our previous PWA of $K^- p \rightarrow \pi^0 \Lambda$ data.

COS A

SPECTROSCOPY WITH A KL BEAM

Collaboration

0 0.2 0.4

COS A

Polarization Data for $K^- p \to \pi^0 \Lambda$ and $K^0_L p \to \pi^+ \Lambda$

Figure: Comparison of selected polarization data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1760 MeV and 1880 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Vissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Overview of Experimental Database

Figure: Experimental data available for $K_L^0 p \to K^+ n$ and $K_L^0 p \to K_L p$ as a function of c.m. energy *W*. The number of data points (dp) is given in the RHS of each subplot; blue (red) shows amount of unpolarized (polarized) observables. Total cross sections are plotted at 0°.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Overview of Experimental Database (Cont'd)

Figure: Experimental data available for $K_L^0 p \rightarrow K_S^0 p$ and $K_L^0 p \rightarrow \pi^+ \Lambda$ as a function of c.m. energy *W*. The number of data points (dp) is given in the RHS of each subplot; blue (red) shows amount of unpolarized (polarized) observables. Total cross sections are plotted at 0°.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Overview of Experimental Database (Cont'd)

Figure: Experimental data available for $K_L^0 p \rightarrow \pi^+ \Sigma^0$ and $K_L^0 p \rightarrow \pi^0 \Sigma^+$ as a function of c.m. energy *W*. The number of data points (dp) is given in the RHS of each subplot; blue (red) shows amount of unpolarized (polarized) observables. Total cross sections are plotted at 0°.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- Reactions K⁰_Lp → π⁺Σ⁰ and K⁰_Lp → π⁰Σ⁺ are isospin selective (only I = 1 amplitudes are involved) whereas reactions K⁻p → π⁻Σ⁺ and K⁻p → π⁺Σ⁻ are not. New K⁰_Lp measurements would lead to better understanding of Σ^{*} states and help constrain amplitudes for K⁻p → πΣ reactions.
- Similarly, $K_L^0 n$ measurements, combined with $K_L^0 p$ data, would improve our knowledge of Λ^* states. The existing $K_L^0 n$ database is nonexistent.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Expected Results

- ► Threshold for K^-p and K_L^0p reactions leading to $K\Xi$ final states is fairly high ($W_{\text{thresh}} = 1816 \text{ MeV}$)
- ► There are no $d\sigma/d\Omega$ data available for $K^0_L p \to K^+ \Xi^0$ and very few (none recent) for $K^- p \to K^0 \Xi^0$ or $K^- p \to K^+ \Xi^-$
- Measurements for these reactions would be very helpful, especially for comparing with predictions from dynamical coupled-channel (DCC) models
- ► $K_L^0 p \to K^+ \Xi^0$ is isospin-1 selective, whereas the reactions $K^- p \to K^0 \Xi^0$ and $K^- p \to K^+ \Xi^-$ involve both I = 0 and I = 1 amplitudes

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

Vlissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Expected $K_L p \rightarrow K_S p$ Results

Figure: Reconstructed $K_L p \rightarrow K_S p \ d\sigma/d\Omega$ values for various values of W for 100 days of running.

HYPERON SPECTROSCOPY WITH A KL BEAM

D. Mark Manley for the GlueX Collaboration

Ratios of Uncertainties in PW Amplitudes

Figure: Ratios of uncertainties of single-energy PW amplitudes of proposed data for 20 days (green) and 100 days (blue) of running based on analogous PWA of $\pi^+p \rightarrow \pi^+p$ vs. single-energy solutions associated with SAID WI14 solution (a fit of the world database).

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

Impact of Proposed Data on SAID SES

Figure: Two examples (W = 1743 MeV) showing impact of proposed data on SAID single-energy solutions. The green band indicates expected uncertainties for 20 days and the blue band for 100 days of running. The solid curve corresponds to the SAID WI14 solution.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Expected Precision of Resonance Parameters

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Mode

Missing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

Resonance	PDG	2016 SAI		ID 20 da		20 days 100		lays
	M (MeV)	Γ (MeV)	M (MeV)	Γ (MeV)	M (MeV)	Γ (MeV)	M (MeV)	Γ (MeV)
$\Delta(1620)1/2^{-}$	1630 ± 30	140 ± 10	1615.2 ± 0.4	146.9 ± 1.9	1614±4	140 ± 20	1615±1	130±5
$\Delta(1700)3/2^{-}$	1700 ± 40	300 ± 100	1695.0 ± 1.3	375.5 ± 7.0	1720 ± 60	580 ± 350	1714 ± 20	530 ± 100

Figure: $S_{31}(1620)$ and $D_{33}(1700)$ Breit-Wigner parameters from PDG 2016 and SAID WI14 compared with corresponding values expected for 20 and 100 days of running time.

- New data for inelastic K⁰_Lp scattering would greatly improve our knowledge of Σ* resonances.
 Measurements on a neutron target would similarly improve our knowledge of Λ* resonances.
- Very few polarization data are available for any K⁰_LP reactions but are needed to help remove ambiguities in PWAs.
- To search for missing hyperon resonances, we will carry out measurements of production reactions:

$$\Sigma^*$$
: $K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

- Ξ^* : $K^0_I p o K \Xi^*, \pi K \Xi^*$
- $\Omega^*: \quad K^0_L p \to K^+ K^+ \Omega^*$
- Measurements with K⁰_L beams performed with good energy & angle coverage & good statistics would likely find several missing hyperon resonances.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

lissing lesonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- New data for inelastic K⁰_Lp scattering would greatly improve our knowledge of Σ* resonances.
 Measurements on a neutron target would similarly improve our knowledge of Λ* resonances.
- Very few polarization data are available for any K⁰_Lp reactions but are needed to help remove ambiguities in PWAs.
- ► To search for missing hyperon resonances, we will carry out measurements of production reactions:

$$\Sigma^*$$
: $K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

$$\Xi^*$$
: $K^0_I p o K \Xi^*$, $\pi K \Xi^*$

$$\Omega^*: \quad K_I^{\overline{0}}p \to K^+K^+\Omega^*$$

► Measurements with K⁰_L beams performed with good energy & angle coverage & good statistics would likely find several missing hyperon resonances.

・ロト・(日)・(日)・(日)・(ロ)

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

- New data for inelastic $K_L^0 p$ scattering would greatly improve our knowledge of Σ^* resonances. Measurements on a neutron target would similarly improve our knowledge of Λ^* resonances.
- Very few polarization data are available for any $K_{I}^{0}p$ reactions but are needed to help remove ambiguities in PWAs.
- To search for missing hyperon resonances, we will carry out measurements of production reactions:

$$\Sigma^*: \quad K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

- $$\begin{split} \Xi^* \colon & K^0_L p \to K \Xi^*, \, \pi K \Xi^* \\ \Omega^* \colon & K^0_L p \to K^+ K^+ \Omega^* \end{split}$$
- Measurements with K_r^0 beams performed with good

SPECTROSCOPY WITH A KL BEAM

D. Mark Manley for the GlueX Collaboration

Summarv

38/40

- New data for inelastic K⁰_Lp scattering would greatly improve our knowledge of Σ* resonances.
 Measurements on a neutron target would similarly improve our knowledge of Λ* resonances.
- Very few polarization data are available for any K⁰_Lp reactions but are needed to help remove ambiguities in PWAs.
- To search for missing hyperon resonances, we will carry out measurements of production reactions:

$$\Sigma^*: \quad K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

 Ξ^* : $K_I^0 p \to K \Xi^*, \pi K \Xi^*$

$$\Omega^*: \quad K^0_L p \to K^+ K^+ \Omega^*$$

 Measurements with K⁰_L beams performed with good energy & angle coverage & good statistics would likely find several missing hyperon resonances.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

lissing lesonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Summary and Conclusions (Cont'd)

- With 100 days of running time, we can provide reliable solution for all resonances having elastic branching ratios larger than 4%, at least up to ℓ = 4. With 20 days of beamtime, we could only carry out simple "bump hunting".
- From our π⁺p PWA study, we can conclude that the precision of resonance parameters extracted from PWAs of KLF data for the higher-mass Λ* and Σ* states that we propose to measure will deteriorate w/o sufficient running time. The spectrum of these states is expected to be densely populated with typical mass differences of about 100 MeV for states with the same quantum numbers; therefore, 100 days of beam time is needed to obtain the precision to disentangle the spectrum of observed hyperon states.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

lissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Summary and Conclusions (Cont'd)

- With 100 days of running time, we can provide reliable solution for all resonances having elastic branching ratios larger than 4%, at least up to ℓ = 4. With 20 days of beamtime, we could only carry out simple "bump hunting".
- From our π⁺p PWA study, we can conclude that the precision of resonance parameters extracted from PWAs of KLF data for the higher-mass Λ^{*} and Σ^{*} states that we propose to measure will deteriorate w/o sufficient running time. The spectrum of these states is expected to be densely populated with typical mass differences of about 100 MeV for states with the same quantum numbers; therefore, 100 days of beam time is needed to obtain the precision to disentangle the spectrum of observed hyperon states.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

ntroduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

The work of D. M. Manley was supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323.

HYPERON SPECTROSCOPY WITH A K_L BEAM

D. Mark Manley for the GlueX Collaboration

Introduction

Quark Model

Vlissing Resonances

WA Formalism

Discussion

Current Data

Expected Results

Summary

Acknowledgments

・ロト・日本・日本・日本・日本・日本