EXCITED HYPERON SPECTROSCOPY AT THE PROPOSED K-LONG FACILITY APS April Meeting 2020

04/19/2020 | Kevin Luckas, James Ritman | Institut für Kernphysik - FZ Jülich On behalf of the KLF collaboration

Motivation

- Electromagnetic decay of baryons: probe of wave functions
- Radiative decays discriminate between theoretical models
- K-Long Facility will provide high-statistics and high-quality data
- In this talk, simulation of $\Sigma(1670)^+ \rightarrow \Lambda \pi^+$ as a first step

Outline

- K-Long Facility Beamline
- Simulation and Reconstruction
- Results
- Summary and Outlook

KLF Beamline

- Compact Photon Source \rightarrow Untagged photon beam
- Beryllium target \rightarrow production of K_L^0 via decay of forward emitted ϕ
- LH_2/LD_2 target \rightarrow Secondary target
- $\hfill Glue X$ spectrometer \rightarrow Measuring final state

Event Generator

- Specialized generator based on momentum distribution of K⁰_L from beam simulations
- Reaction $K^0_L p \rightarrow \Sigma (1670)^+ \rightarrow \Lambda \pi^+ \rightarrow \pi^- \pi^+ p$
- Breit-Wigner resonance for $\Sigma(1670)^+$
 - $(M = 1670 \,\mathrm{MeV}, \quad \Gamma = 60 \,\mathrm{MeV})$

Particle Identification

Particle ID based on dE/dX and timing

PID criterion

- Determine the probability for all charged hypotheses
- Keep all PIDs for which probability is above 40 %

Reconstruction of the Λ ($M = 1115 \,\text{MeV}$)

- Combine all π^- and p candidates
- Apply a mass cut with total width 14 MeV

Slide 6

Missing Mass

- Need to distinguish Kaon and γ beam
- Combine Λ with π^+ , determine $MM^2(Xp \to \Lambda \pi^+)$
- Cut with total width of 0.064 GeV² centered around $M_{\kappa^0}^2$

Target Volume

- Kinematic Fit not yet performed
- Primary Vertex is calculated from the measured charged tracks and reconstructed Λ
- Apply selection such that this vertex lies within the target volume
- If more than one valid combination, keep only the one closest to beamline

Overall efficiency

- Reconstructed and generated beam energy agree
- Overall reconstruction efficiency of approximately 6 %

Overall reconstruction efficiency

Main source of losses

Study of individual particle efficiencies \rightarrow losses due to soft pions from Λ decay

Summary

- Custom generator for $K^0_L p \rightarrow \Sigma(1670)^+ \rightarrow \Lambda \pi^+ \rightarrow \pi^- \pi^+ p$
- Reconstructed the final and intermediate state particles with the GlueX spectrometer
- Achieved an overall reconstruction efficiency of 6 %
- Efficiency dominated by losses due to low momentum pion

Outlook

- Analysis of radiative hyperon decays based on GlueX data
- Currently working on analyses of the final states Λγ and Λe⁺e⁻

Thank you for your attention and take care !

BACKUP

PARTICLE IDENTIFICATION

Definition of Probability

- Same is done for the BCAL and TOF time distributions

PID criterion

- Determine the probability for all hypotheses
- Keep all PIDs where rel. probability is above 40 %

EFFICIENCIES

Efficiency determined from "confusion matrix"

Optimal case: Only Diagonal filled

π^+ - EFFICIENCY

