Proposal for JLab PAC45 Strange Hadron Spectroscopy with a Secondary KL Beam at GlueX

Moskov Amaryan

The GlueX Collaboration Meeting, May 17, 2017

<u>Outline</u>

- Physics Motivation
- Hyperon Spectroscopy
- Meson Spectroscopy
- Previous measurements
- The KL Facility at JLab
- Prposed measurements
- Summary

Lattice QCD calculations

Lattice QCD calculations

Thick borders: Hybrid states

Low Lying states

Edwards, Mathur, Richards and Wallace Phys. Rev. D 87, 054506 (2013)

Status of $\ \Omega^{-*}$

- Three light quarks can be arranged in 6 baryonic families, N*, Δ^* , Λ^* , Σ^* , Ξ^* , & Ω^* .
- Number of members in a family that can exist is not arbitrary.
- If **SU(3)**_F symmetry of **QCD** is controlling, then:

- Number of experimentally identified resonances of each baryon family in summary tables is 17 N*, 24 Δ *, 14 Λ *, 12 Σ *, 7 Ξ *, & 2 Ω *.
- **Constituent Quark** models, for instance, predict existence of no less than 64 N*, 22 Δ * states with mass < 3 GeV.
- Seriousness of "missing-states" problem is obvious from these numbers.

• To complete SU(3)_F multiplets, one needs no less than 17 Λ^* , 41 Σ^* , 41 Ξ^* , & 24 Ω^* .

Strange Mesons

	STRANGE		STRANGE	
	$(S = \pm 1, C = B = 0)$		$(S = \pm 1, \ C = B = 0)$	
		$I(J^P)$	- 、 、 、	$I(J^P)$
	$ullet$ K^{\pm}	$1/2(0^{-})$	• K*(1680)	$1/2(1^{-})$
	• K ⁰	$1/2(0^{-})$	• $K_2(1770)$	$1/2(2^{-})$
	• K_S^0	$1/2(0^{-})$	• $K_3^*(1780)$	$1/2(3^{-})$
almost half	• K_L^0	$1/2(0^{-})$	• K ₂ (1820)	$1/2(2^{-})$
not established	$K_0^*(800)$	$1/2(0^+)$	K(1830)	$1/2(0^{-})$
	• K*(892)	$1/2(1^{-})$	$K_0^*(1950)$	$1/2(0^+)$
	• $K_1(1270)$	$1/2(1^+)$	$K_{2}^{*}(1980)$	$1/2(2^+)$
	• $K_1(1400)$	$1/2(1^+)$	• $K_4^*(2045)$	$1/2(4^+)$
	• $K^{*}(1410)$	1/2(1)	$K_2(2250)$	$1/2(2^{-})$
	• $K_0^{+}(1430)$	$1/2(0^+)$	$K_3(2320)$	$1/2(3^+)$
	• $K_2(1430)$	$1/2(2^{+})$	$K_{5}^{*}(2380)$	$1/2(5^{-})$
	K(1460)	1/2(0)	$K_4(2500)$	$1/2(4^{-})$
	K(1630)	$\frac{1}{2}(2)$	K(3100)	????)
	$K_1(1650)$	$\frac{1}{2}(1)$		
	$K_1(1650)$	$\frac{1}{2(1^{+})}$		

Previous Measurements

Previous Measurements

Previous Measurements

Cross sections

Status of Ξ^*

Very poorly measured at AGS (BNL) 32 years ago

•

C.M. Jenkins et al., Phys. Rev. Lett. 51, 951 (1983)

Cross Sections

J.K. Hassal et al., NPB 189 (1981)

K-pi Scattering

How to make a kaon beam?ryThomas Jefferson National Accelerate abig ratory

Aerial View

Hall D Beamline Current setup

KL Beam

- Radiator 0.1 R.L.
- Compact Proton Source
- Be target 40cm

- Distance Be-LH2 16m
- LH2 target 40cm
- LH2 target R=3cm

K⁰_L beam (continued)

- -Electron beam with $I_e = 5\mu A$
- -Delivered with 64 ns bunch spacing avoids overlap in the range of P=0.3-10.0 GeV/c
- -Momentum measured with TOF
- -K⁰_L flux mesured with pair spectrometer

-Side remark: Physics case with polarized targets is under study and feasible

Rate of neutrons and K⁰_L on GlueX target

FIG. 2. Comparison of the neutron and K_2^0 fluxes at the hydrogen bubble chamber for 2° production with 16-GeV electrons.

• With a proton beam ratio $n/K_L = 10^3 - 10^4$

proposed facility is $\epsilon = \frac{N_{K_L}(K_L F) \Delta \Omega_{K_L F}}{N_{K_L}(SLAC) \Delta \Omega_{SLAC}} = 2.4 \times 10^3$ more effective

(24x30=720h):

at 3 GeV N(KL)/200 MeV/c=0.15x106

N(KLF)/N(SLAC) = 720/0.15 = 4800

• ProjectX (Fermi Lab) arXiv:1306.5009

Table III-2: Comparison of the K_L production yield. The BNL AGS kaon and neutron yields are taken from RSVP reviews in 2004 and 2005. The *Project X* yields are for a thick target, fully simulated with LAQGSM/MARS15 into the KOPIO beam solid angle and momentum acceptance.

		Beam energy	Target (λ_I)	$p(K) (\mathrm{MeV}/c)$	K_L/s into 500 μ sr	$K_L : n (E_n > 10 \text{ MeV})$
	BNL AGS	24 GeV	1.1 Pt	300-1200	60×10^{6}	$\sim 1:1000$
	Project X	3 GeV	1.0 C	300-1200	$450 imes 10^6$	$\sim 1:2700$
KL beam can be used to study rare decays Iowever it will be impossible to use it for hyperon spectroscopy because of momentum range and n/K Ratio						

Other Facilities

Talk by Onishi at KL2016

W Resolution

Expected rates

Production	J-PARC*	Jlab (this proposal)	
flux/s	$3 \times 10^4 K^-$	$3 \times 10^4 K_L$	
$\Xi^*/month$	3×10^5	2×10^5	
$\Omega^{-*}/month$	600	4000	

H.~Takahashi, NP A 914, 553 (2013) M.~Naruki and K.~Shirotori, LOI-2014-JPARC

*

Figure 29: Reconstructed $K_L p \rightarrow K_S p$ differential cross sections for various values of W for 100 days of running.

Figure 31: The total cross-section uncertainty estimate (statistical error only) for $K_L p \rightarrow \pi^+ \Lambda$ reaction as a function of K_L beam momentum in comparison with SLAC data [133]. The experimental uncertainties have tick marks at the end of the error bars. The box-shaped error bars in the MC points were increased by a factor of 10.

Figure 33: Total and differential cross section statistical uncertainty estimates (blue points) for the three topologies (column 1: only K^+ reconstructed, column 2: $K^+\Lambda$ reconstructed, and column 3: $K^+\Xi^0$ reconstructed) in comparison with data taken from Ref. [134] (red points).

Figure 34: Estimates of the statistical uncertainties of the induced polarization of the cascade as a function of W (one-fold differential) and $\cos \theta_{K^+}$ (two-fold differential).

Figure 36: The cross-section uncertainty estimates (statistical only) for $K_L p \rightarrow K^+ n$ reaction for the W = 2 GeV (left) in comparison with data from Ref. [136] and W = 3 GeV (right) The error bars for the right plot were increased by factor of 10 to make them visible.

Figure 38: The $I = 1/2 K\pi$ scattering *P*-wave phase-shift function of $m_{K\pi}$. The left panel shows experimental results from LASS [88] and Estabrooks *et al.* [87]. The gray band represents the fit to the τ decay data by Boito *et al.* [103]. On the right panel, we present results of expected measurement for 100 days of running. The statistical errors on the right panel are increased by factor of 10 for a better visibility.

Expected Statistics

Table 1: Expected statistics for differential cross sections of different reactions with LH₂ and below W = 3.5 GeV for 100 days of beam time.

Reaction	Statistics
	(events)
$K_L p \rightarrow K_S p$	8M
$K_L p \to \pi^+ \Lambda$	24M
$K_L p \to K^+ \Xi^0$	4M
$K_L p \to K^+ n$	200M
$K_L p \to K^- \pi^+ p$	2M

There are no data on "neutron" targets and, and for this reason, it is hard to make a realistic estimate of the statistics for $K_L n$ reactions. If we assume similar statistics as on a proton target, the full program will be completed after running 100 days with LH₂ and 100 days with LD₂ targets.

The need for exclusive reconstruction to extract polarization observables further decrease the expected statistics, e.g., from 4M to **400k** events in the $K\Xi$ case. These statistics, however, would allow a precise measurement of the double-differential polarization observables with statistical uncertainties on the order of 5–10%. Secondly, kaon flux has a maximum around W = 3 GeV, which decreases rapidly towards high/low W's. Thus, the 100 days of beam time on the LH₂ are essential to maximize the discovery potential of the K_L Facility and cover the densely populated hyperon regime at low-W.

Other Impacts

Evolution of an Early Universe at Freeze-out

Partial pressure P/T⁴

YSTAR2016 Proceedings arXiv:1701.07346

Summary

- KN scattering still remains very poorly studied
- lack of data on excited hyperon states requires significant experimental efforts to be completed
- Experimental data on Kpi system needs to be updated for many different reasons
- Our preliminary studies show that production of few times $I 0^4 K_L^0/s$ at GlueX target in Hall D is feasible
 - -Proposed setup will have highest intensity K⁰_L beam ever used for hadron spectroscopy
- -Data obtained at Jlab will be unique and partially complementary to charged kaon data

Thank You!