Search for missing Sigma-hyperon states

Andrey Sarantsev

Petersburg Nuclear Physics Institute

"HISKP Uni-Bonn" (Germany) RNC "Kurchatov Institute" PNPI (Russia)

		J^P	Status	Mass	Width
singlet	$\Lambda(1405)$	$1/2^{-}$	****	$1405^{+1.3}_{-1.0}$	50.5 ± 2.0
N(1535)	$\Lambda(1670)$	$1/2^{-}$	****	1660 - 1680	25 - 50
N(1650)	$\Lambda(1800)$	$1/2^{-}$	***	1720 - 1850	200 - 400
singlet	$\Lambda(1520)$	$3/2^{-}$	****	1519.5 ± 1.0	15.6 ± 1.0
N(1520)	$\Lambda(1690)$	$3/2^{-}$	****	1685 - 1695	50 - 70
N(1675)	$\Lambda(1830)$	$5/2^{-}$	****	1810 - 1830	60 - 110
N(2190)	$\Lambda(2100)$	$7/2^{-}$	****	2090 - 2110	100 - 250
N(1440)	$\Lambda(1600)$	$1/2^{+}$	***	1560 - 1700	50 - 250
N(1710)	$\Lambda(1810)$	$1/2^{+}$	***	1750 - 1850	50 - 250
N(1700)	$\Lambda(1890)$	$3/2^{+}$	****	1850 - 1910	60 - 200
N(1680)	$\Lambda(1820)$	$5/2^{+}$	****	1815 - 1825	70 - 90
N(2060)	$\Lambda(2110)$	$5/2^{+}$	***	2090 - 2140	150 - 250

Table 1: $\Lambda\text{-hyperons}$ used in the first fit of the data.

		J^P	Status	Mass	Width
N(1440)	$\Sigma(1660)$	$1/2^{+}$	***	1630 - 1690	40 - 200
$\Delta(1230)$	$\Sigma(1385)$	$3/2^{+}$	****	1382.80 ± 0.35	36.0 ± 0.7
$N(1680), \Delta(1905)$	$\Sigma(1915)$	$5/2^{+}$	****	1900 - 1935	80 - 160
$N(1990), \Delta(1950)$	$\Sigma(2030)$	$7/2^{+}$	****	2025 - 2040	150 - 200
N(1520)	$\Sigma(1670)$	$3/2^{-}$	****	1665 - 1685	40 - 80
$N(1535), \Delta(1620), N(1650)$	$\Sigma(1750)$	$1/2^{-}$	***	1730 - 1800	60 - 160
N(1675)	$\Sigma(1775)$	$5/2^{-}$	****	1770 - 1780	105 - 135
$N(1700), \Delta(1700)$	$\Sigma(1940)$	$3/2^{-}$	***	1900 - 1950	150 - 300

Table 2: Σ -Hyperons used in the first fit of the data.

Many Σ states are missing.

Kaon beam motivation

There is a hope to observe the baryon multiplets and therefore to confirm the states observed in the Nucleon and Delta sector.

$K^- p \to K^0 n$	$K^-p \to K^-p$	$K^-p\to\omega\Lambda$
$K^- p \to \pi^0 \Lambda$	$K^-p\to\eta\Lambda$	$K^- p \to \pi^+ \Sigma^-$
$K^- p \to \pi^0 \Sigma^0$	$K^- p \to \pi^- \Sigma^+$	$K^- p \to \pi^0 \pi^0 \Lambda$
$K^- p \to K^+ \Xi^-$	$K^- p \to K^0 \Xi^0$	$K^- p \to \pi^0 \pi^0 \Sigma^0$

Table 3: List of reactions used in the partial wave analysis.

J^P		Known state	New state	Mass
$1/2^{+}$	N(1440)	$\Sigma(1660)$		
$3/2^{+}$	$\Delta(1230)$	$\Sigma(1385)$		
$5/2^{+}$	$N(1680), \Delta(1905)$	$\Sigma(1915)$????	
$7/2^{+}$	$N(1990), \Delta(1950)$	$\Sigma(2030)$????	
$3/2^{-}$	N(1520)	$\Sigma(1670)$		
$1/2^{-}$	$N(1535), \Delta(1620), N(1650)$	$\Sigma(1750)$	$\Sigma(1620)$	1680 ± 8
			$\Sigma(1900)$	1936 ± 10
$5/2^{-}$	N(1675)	$\Sigma(1775)$		
$3/2^{-}$	$N(1700), \Delta(1700)$	$\Sigma(1940)$	$\Sigma(1860)$	1856 ± 10
$1/2^{-}$	N(1895)		$\Sigma(2120)$	2158 ± 25

Table 4: Σ -Hyperons Observed states

Prediction for
$$\frac{d\sigma}{d\Omega}(K_L p \to K^0 p(K^+ n))$$

Let us consider the decay of the isospin 0 and isospin 1 states into K^-p and K^0n

$$|A(K^{-}p)|^{2} = \left(A_{1}\frac{1}{\sqrt{2}} + A_{0}\frac{1}{\sqrt{2}}\right)^{2} = \frac{1}{2}\left(|A_{1}|^{2} + |A_{0}|^{2} + 2Re(A_{1}A_{0}^{*})\right)$$
$$|A(K^{0}n)|^{2} = \left(A_{1}\frac{1}{\sqrt{2}} - A_{0}\frac{1}{\sqrt{2}}\right)^{2} = \frac{1}{2}\left(|A_{1}|^{2} + |A_{0}|^{2} - 2Re(A_{1}A_{0}^{*})\right)$$

$$A_{KN} = \omega^* \left[G(s,t) + H(s,t)i(\vec{\sigma}\vec{n}) \right] \omega' \qquad \vec{n}_j = \varepsilon_{\mu\nu j} \frac{q_\mu k_\nu}{|\vec{k}||\vec{q}|} \,.$$

Differential cross section in c.m.s. of the reaction

$$|A|^2 = \frac{1}{2} \text{Tr} \left[A_{\pi N}^* A_{\pi N} \right] = |G(s,t)|^2 + |H(s,t)|^2 (1-z^2)$$

the recoil asymmetry:

$$P = \frac{\text{Tr} \left[A_{\pi N}^* \sigma_2 A_{\pi N}\right]}{2|A|^2 \cos \phi} = \sin \Theta \frac{2Im \left(H^*(s, t)G(s, t)\right)}{|A|^2}.$$

Prediction for the recoil asymmetry $K_L p \to K^0 p(K^+ n)$

Prediction for the recoil asymmetry $K_L p \to \pi^0 \Sigma^+ (\pi^+ \Sigma^0)$

SUMMARY

- The planned $K_L p$ experiment provides a unique possibility to study the spectrum and properties of Σ hyperons.
- The data on the K_Lp collision are necessary to perform the full amplitude decomposition of the observables measured in the K⁻p collision reactions: therefore the new data are important for the determination of the spectrum and properties of Λ hyperons.