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1.1  Why Kπ scattering is important?  

•  Hadron spectroscopy: determine resonances and their nature 
–  P-wave: K*(892), K*(1410), K*(1680), … 

–  S-wave: “κ(~800)”, … 
–  Exotics,… 
 
 
 
 

•  ππ and Kπ   building blocks for hadronic physics: 
-  Test of Chiral Dynamics 

-  Extraction of fundamental parameters of the Standard Model 

-  Look for physics beyond the Standard Model: High precision at low 
energy as a key to new physics? 
 
 
         Very important when Final State Interactions at play! 

 
 
 
 
 

 
•  BSM effects :  
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1.2  Ex: Kπ scattering, P-wave 
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Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

1.2   Ex: �π scattering: P-wave 
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Tau data 

τ � Kπντ  

   Boito, Escribano & Jamin’10 

See also  
lattice QCD 
Dudek et al. 
Wilson et al.’14 



1.2  Kπ scattering from lattice QCD 
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Wilson, Briceno, Dudek,  
Edwards, Thomas’19  
Adapted by  
 Pelaez & Rodas’22 



2.  Using Kπ scattering to test ChPT  



Ex: Kπ scattering, P-wave 
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Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

�π scattering: P-wave 
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Tau data 

τ � Kπντ  

   Boito, Escribano & Jamin’10 

 ChPT

8 



2.1   Chiral Symmetry 

•  Limit 
 
 
 
 
 
 
 
Symmetry: 

 

•  Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, 
pions, eta) 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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0km →

   
LQCD

0 = − 1
4

GµνG
µν + qLiγ µ DµqL + qRiγ µ DµqR ,  

u
q d

s

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

   
qL/ R ≡ 1

2
1 ∓ γ 5( )qwith 

(3) (3) (3)L R VG SU SU SU≡ ⊗ →

→  LQCD

   mu , md ≪ ms < ΛQCD

 Weinberg’s power counting rule 

p << 4 ~ 1 GeVH FππΛ =
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }



2.2   Chiral expansion 

•    

 
 
 
 

•  The structure of the lagrangian is fixed by chiral symmetry but not the 
coupling constants à LECs appearing at each order 

•  The method has been rigorously established and can be formulated as a 
set of calculational rules:  
 

LO :     tree level diagrams with 
 
 

NLO:   tree level diagrams with  
           1-loop diagrams with 
 
 

NNLO: tree level diagrams with  
                 2-loop diagrams with  
                 1-loop diagrams with one vertex from 
 

•  Renormalizable and unitary order by order in the expansion 
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LO : 
   O p2( ) NLO : 

   O p6( )NNLO :    O p4( )
  L2   LChPT =   +    L4  ....+  +    L6

  L2

  L4

  L2

  L6

  L2

  L4

   L2 :  F0 , B0

   
L4 = Li  

i=1

10

∑ O4
i ,

   
L6 = Ci  

i=1

90

∑ O6
i



•  Today’s standard in the meson sector: 2-loop calculations 
 

•  Main obstacle to reaching high precision: determination of the 
LECs: O(p6) LECs proliferation makes the program to pin down/
estimate all of them prohibitive 
 

•  In a specific process, only a limited number of LECs appear 
 
•  The LECs calculable if QCD solvable, instead 

–  Determined from experimental measurement 
–  Estimated with models: Resonances, large NC 

–  Computed on the lattice 
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2.3  ChPT in the meson sector: precision calculations 
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2.4  Test of SU(3) ChPT  
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•  Interesting framework to test ChPT is offered by the kaons: Kl3, Kl4,  
K → 3π, etc 
 

•  A very interesting quantity is the scattering length: first term in the 
expansion: 

 
 
 
 

 

•  For ππ: SU(2) ChPT very successful!  

 

 
 
 
 

 

2.4  Test of SU(3) ChPT 
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Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 



 
 

 

ππ scattering lengths  
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 H. Leutwyler 
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•  Interesting framework to test ChPT is offered by the kaons: Kl3, Kl4,  
K → 3π, etc 
 

•  A very interesting quantity is the scattering length: first term in the 
expansion: 

 
 
 
 

 

•  For ππ: SU(2) ChPT very successful!  

•  What about SU(3) ChPT?  
In principle slower convergence if convergence at all!  

 

 
 
 
 

 

2.4  Test of SU(3) ChPT 
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Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 



Kπ scattering lengths: S-wave 
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�π scattering lengths: S-wave 
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Figure 14: Standard error ellipse for the S-wave scattering lengths obtained from solving the
RS equations with boundary conditions. The corresponding ellipse in the ChPT calculation at
O(p4) and the current-algebra result are also plotted.

above. A rather small error is found, but one must keep in mind that the dependence on the
asymptotic region is significant here and it is difficult to evaluate the error from this region in a
very reliable way. The central value arising from the sum rule is smaller than what is obtained
from the RS solution, but the two results are compatible within their errors. We also note that
the output of the sum rule is significantly influenced by the values of the scattering lengths used
as input in the integrand. For this reason, the result obtained here differs from the one quoted
in ref. [15].

Before we present the results for the amplitudes in the threshold region, a few remarks are
in order concerning the intermediate energy region, that ranges from the threshold up to the
matching point. Experimental data from production experiments exist below 1 GeV, but one
has to keep in mind the possibility that systematic errors may have been underestimated in this
energy region in such experiments (a discussion of the ππ case can be found in ref. [67]). Fig. 15
shows the I = 1

2 P -wave phase shift from the RS equations compared to experiment. The central

curve correspond to solving with a1/2
0 , a3/2

0 taken at the center of the ellipse fig.14 while the
upper and lower curves are obtained by using the points on the ellipse with the maximal and

the minimal values for a1/2
0 respectively. The experimental results are seen to deviate from the

solutions as the energy decreases from the matching point. In particular, the mass of the K∗

which is predicted from the RS equations is

mK∗ = (905 ± 2) MeV (93)

32

Results so far
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Plot courtesy of G. Colangelo.

T. Janowski Determination of K⇡ scattering lengths at physical kinematics

Buettiker, Descotes-Genon, Moussallam’04 

Janowski’14 



Roy-Steiner equations for Kπ  Roy-Steiner equations for Kπ 
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•  Unitarity effects can be calculated exactly using dispersive methods 
 
•  Unitarity, analyticity and crossing symmetry ≡ Roy-Steiner equations 
 
•  Input: Data on �π → �π  and π π → KK  for E ≥ 1 GeV 

           two subtraction constants, e.g.      and 
 

•  Output: the full Kπ scattering amplitude below 1 GeV  
                      In poor agreement with the experimental data 
 

•  Numerical solutions of the Roy-(Steiner) equations: 
–  π π: Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)  

Bern group: Ananthanarayan et al.’00, Caprini et al.’11 
Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern’01 
Madrid-Cracow group: Garcia-Martin,et al.’11 

–  K π: Buettiker, Descotes-Genon, Moussallam’04 

–  K N:  Ruiz de Elvira et al’15 

  a0
0

  a2
0

16 Emilie Passemar 

, Pelaez & Rodas’16 ’22 



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

Table 25
S-wave scattering lengths (m⇡ units).

Ref. [43] UFD CFD

a1/20 0.224 ± 0.022 0.241 ± 0.012 0.224 ± 0.010
a3/20 �0.0448 ± 0.0077 �0.067 ± 0.012 �0.048 ± 0.006

Fig. 41. Comparison between various sum rules and determinations coming from different Roy–Steiner equations, compared with both lattice QCD
predictions and ChPT calculations. The references in the legend are as in Fig. 4, except that we are now providing as a cyan diamond our new result
obtained directly from our dispersively constrained fit to data (CFD), listed in boldface in Table 25, as well as our best or ‘‘Final value’’, shown as
a blue ellipse and listed in Table 29. The latter is obtained by combining the dispersive sum rules explained in Section 7.1. Note that the two axes
are plotted with different scales to maximize the visibility of the region of interest.

sum rule [43,348]:

8⇡m+a�
0

m2+ � m2�
= 1

2⇡

Z 1

4m2
⇡

dt 0

t 0
Im

G1(t 0, s0b)
q

(t 0 � 4m2
⇡ )(t 0 � 4m2

K )
+ 1

⇡

Z 1

m2+
ds0

Im F�(s0, t 0b)
�s0

. (136)

This sum rule is dominated by the ⇡⇡ ! KK̄ amplitude and thus, for all means and purposes, it is independent from
the value obtained with Eq. (132). In practice, we will calculate this sum rule with a = �10.9m2

⇡ , which maximizes the
Roy–Steiner applicability in the ⇡⇡ ! KK̄ channel. Note that we only obtain a sum rule for a�

0 from the HDR without
subtractions for F�, since a�

0 is input in our subtracted F� HDR case.
At this point, we can use the UFD and CFD parameterizations to determine the ⇡K ! ⇡K threshold parameters, which

can be done either directly from the parameterizations, or from the sum rules, which, being obtained from an integral
would suppress the ⇡K ! ⇡K parameterization dependence. Thus, in Table 25 we have collected the scattering lengths
obtained directly from the UFD and CFD parameterizations. Of course, we think the constrained results are better because
they are consistent with dispersion relations. We can see that there is a change from UFD to CFD, by roughly 1.5 standard
deviations, which brings our CFD results very close to those of the dispersive calculation of the Bonn–Paris group [43]. We
are thus providing an independent dispersive confirmation of those older dispersive results, this time using data together
with the dispersive constraints, whereas in [43] they were obtained from Roy–Steiner solutions.

We are showing our results obtained directly from our CFD parameterization as a cyan diamond and cross in Fig. 41,
which overlaps nicely with the brown ellipse from [43]. Note that it also overlaps with our old result [41], where we only
used FDRs as constraints. The use of those FDRs together with the Roy–Steiner equations in this review has moved the
central value within the old error bars, and has reduced considerably our uncertainties. Note that the errors in Table 25,
plotted as a cross in Fig. 41, are given as uncorrelated since they come from the direct CFD parameterization, where
we treat all input parameters as uncorrelated and thus each partial wave as independent. This is a conservative error
estimate, but we will discuss below the correlation between scattering lengths once we use the a�

0 numerical values from
sum rules.

The nice consistency of the CFD versus the inconsistency of the UFD is illustrated in Table 26. There we see an almost
perfect agreement between the a�

0 obtained directly from the CFD parameterization, and the sum rules in Eqs. (132) and
(136) using CFD as input. In contrast, for the UFD, the inconsistencies reach the three standard-deviation level.

Therefore, sum rules not only provide stringent constraints but sometimes also the most reliable and precise results
for threshold parameters, suppressing model dependencies too. Thus, once we have shown that these two sum-rule
determinations with CFD input are consistent, they provide a very stringent and robust result for a�

0 which we have

83

Kπ scattering lengths: S-wave  
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Pelaez & Rodas’22 

Lattice Dispersive 
BE: Bijnens & Ecker’14 
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J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

Table 24
Previous determinations of ⇡K scalar scattering lengths from various approaches. Note that lattice results tend to yield lower
values than dispersive results for both scattering lengths

Reference m⇡a
1/2
0 m⇡a

3/2
0 Description

Büttiker et al. (2004) [43] 0.224 ± 0.022 �0.0448 ± 0.0077 Dispersive Roy–Steiner
Peláez-Rodas (2016) [41] 0.220 ± 0.010 �0.0540+0.010

�0.014 Fit constrained with FDR

Bijnens–Ecker (2014) [86] 0.142 �0.071 ChPT LO
Bijnens–Ecker (2014) [86] 0.173(0.169) �0.064(�0.066) ChPT NLO fit 14 (free fit)
Bijnens–Ecker (2014) [86] 0.224(0.226) �0.048(�0.047) ChPT NNLO fit 14 (free fit)
Miao et al. (2004) [87] – �0.056 ± 0.023 lattice, improved Wilson quenched
NPLQCD (2006) [88] 0.1725 ± 0.0017+0.0023

�0.0156 �0.0574 ± 0.016+0.0024
�0.0058 lattice. Domain-wall valence

Flynn–Nieves (2007) [89] 0.175 ± 0.017 – lattice+Omnès Dispersion Relation
Fu (2012) [91] 0.1819 ± 0.0035 �0.0512 ± 0.0018 lattice, staggered, moving wall source
PACS-CS (2014) [92] 0.182 ± 0.053 �0.060 ± 0.006 lattice, improved Wilson
ETM (2018) [93] – �0.059 ± 0.002 lattice, twisted mass.

for low-energy effective field theory. Namely, with the ⇡K ! ⇡K threshold parameters, we are testing SU(3) Chiral
Perturbation Theory (ChPT) and its convergence when the strange quark is taken into account since its mass is not as
small as those of non-strange quarks. We emphasize again that we are working in the isospin conserving approximation
and for studies of isospin violation in ⇡K ! ⇡K we refer to [160–163]

The problem to extract these threshold parameters is that the kinematic suppression makes it very hard to obtain
precise data, or even data at all, close to threshold. For instance, see all the data plots in Section 2.1 for ⇡K ! ⇡K partial
waves and note that the lowest energy data are at least 100 MeV above threshold, and even those points are rather
isolated and usually with large uncertainties. Therefore, extracting threshold parameters directly from scattering data
depends strongly on the precise parameterization or model used for the extrapolation down to threshold. It is advisable
to avoid such a strong model dependence. As we will see below, some determinations from ⇡K atom lifetimes provide
information on scattering lengths, although their uncertainties are rather large.

Sum rules are obtained from dispersion relations evaluated at particular points or limits and this makes their prediction
much more robust than direct extractions using a parameterization of the data. The reason lies in the integral nature of the
sum rule, which makes rather irrelevant the details of a particular parameterization around threshold, thus suppressing
very strongly, if not completely, any model or parameterization dependence. In addition, an integral determination
typically yields a much smaller uncertainty. Therefore, generically, sum rules provide the most accurate and robust method
to determine threshold parameters.

Moreover, sum rules for threshold parameters provide additional consistency tests for data parameterizations. In
this section we will first discuss the scalar scattering lengths, since they have attracted quite some attention recently,
discussing also the Adler zeros in these waves. Next, we will present values for both scattering lengths and slopes for all
waves up to angular momentum 2 and finally discuss the subthreshold parameters.

7.1.1. Scalar scattering lengths
At present, there is a great deal of interest in the values of the S-wave scattering lengths from ChPT, dispersion

theory, and lattice gauge theory communities, since some tension exists between the determinations using these different
techniques. This was illustrated in Fig. 4 in the introduction, where we can see in the (a1/20 , a3/20 ) plane that, for both
scattering lengths, lattice QCD results (in red) tend to produce lower values than dispersive results (in brown and green).
The tension is somewhat more evident for the a1/20 channel, which, as we have seen, is probably the most controversial
one and includes the /K ⇤

0 (700) meson. Concerning ChPT, the LO receives sizable NLO corrections that take the values
closer to lattice results, but in order to reach the dispersive results the NNLO corrections should be even bigger, casting
doubts about the good convergence of SU(3) ChPT. Actually, in the extensive ChPT review in [86] it is shown that the ⇡K
scattering lengths have the worst convergence of all the observables under consideration. The precise values of all these
calculations are shown in Table 24.

Experimentally the best determination, avoiding model dependencies, is the combination

a�
0 = 1

3
(a1/20 � a3/20 ) = 0.11+0.09

�0.04m
�1
⇡ (DIRAC), (130)

obtained in 2017 by the DIRAC Collaboration [94] by studying the lifetime of ⇡K atoms at CERN. The relation between
the decay width of these atoms and the scattering lengths including isospin violation and QED corrections can be found
in [346,347]. The observation of these atoms and their decay lifetime is a remarkable experimental achievement, but
the uncertainty of the result, which is represented by a beige band in Fig. 4, labeled DIRAC 17, is not enough to discern
between present lattice QCD or dispersive results.

So far, the best dispersive determinations come from the 2004 Roy–Steiner analysis of [43] (Brown ellipse in Fig. 4)
or our 2016 fit to data constrained with forward dispersion relations [41] (Green result labeled ‘‘FDR-CFD-old’’ in Fig. 4).
Note, however, that their uncertainties are rather large and, as explained several times, that the authors of [43] solve the

81
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Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

�π scattering lengths: P-wave 
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Tau data 

τ � Kπντ  

   Boito, Escribano & Jamin’10 

 ChPT

19 
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•  Poor agreement         need more data  
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Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 

Diogo Boito

i ii iii 23

P-wave I=1/2 threshold parameters

Bernard, Kaiser, and Meissner, NP B357 (1991).

Bernard, Kaiser, and Meissner, NP B364 (1991).

Bijnens, Dhonte, and Talavera, JHEP 0405 (2004).

Buettiker, Descotes-Genon, and Moussallam, EPJC 33 (2004).

2�
s
Re tIl (s) =

1
2q

sin 2�I
l (q) = q2l

�
aI

l + bI
l q2 + cI

l q4 +O(q6)
⇥

Our results ChPT O(p4) [?] RChPT O(p4) [?] ChPT O(p6) [?] Roy-Steiner [?]
m3

� a1/2
1 � 10 0.166(5) 0.16(3) 0.18(3) 0.18 0.19(1)

m5
� b1/2

1 � 102 0.258(11) - - 0.18(2)
m7

� c1/2
1 � 103 0.90(4) - - 0.71(11)

EuroFlavour10 Munich 09.09.10

4
9)
3

iii. fits to tau data + constraints from Kl3

Tau data 

   Boito, Escribano & Jamin’10 

Recent analysis combining Kl3, tau and D data :  Bernard’14 
a1/21 0.249 ± 0.011 0.247 ± 0.001 0.16(3) 0.18 , 0.18(3) , 0.19(1) , 0.17×10m3

π

λ′
+ 20.64(1.75) , 25.6(1.8) , 24.86(1.88) , 24.80(1.56)

25.56 ± 0.40 25.58 ± 0.09
×103 26.05+0.21

−0.58 , 25.20(33) , 24.66(77) , 25.49(36)

λ′′
+ 3.20(69) , 1.5(8) , 1.11(74) , 1.94(88)

1.11± 0.08 1.22 ± 0.02
×103 1.29+0.01

−0.04 , 1.29(3) , 1.20(2) , 1.22(2)

BKπ[%] 0.414 ± 0.008 0.414 ± 0.005 0.404 ± 0.02 ± 0.013 , 0.416 ± 0.01 ± 0.008

R× 103 0.70± 0.43 1.23 ± 0.05 1.4+1.3
−0.9

Table 2. Prediction for the Kπ scattering length a1/21 , the slope and curvature of the vector form
factor, the branching ratio and the integrated rate R(τ → K∗(1410)ντ → Kππντ ). The second and
third column give respectively the results of the fit without and with the constraint on the curvature
of the vector form factor. The last column summarizes also various theoretical predictions for a1/21 ,
λ′

+ and λ′′

+ as well as experimental results for the two latter quantities and the integrated rate.

From left to right the numbers for a1/21 correspond to χPT at O(p4) [68] and at O(p6) [69], RχPT
at O(p4) [70], a Roy-Steiner dispersive analysis of πK scattering [56] and a τ decay analysis [18].
The experimental numbers from Kℓ3 data (first line) for λ′

+ and λ′′

+ are from left to right from
KTeV [71] , KLOE [8, 72], NA48 [7, 73] and ISTRA+ [74]. The theoretical numbers (second line)
are from earlier works on τ → Kπντ without constraints from Kℓ3 [15]-[17] and with constraints
[18]. The experimental results for BKπ are from [13, 33] respectively.

where Gas corresponds to the integral from Λ to infinity with the phase equal to π. The

sum rule is satisfied for ns = 0.696. We have allowed for some violation of the sum rule

since Gas is not known, our fit leading to a 5% discrepancy. As discussed previously for

the vector form factor the second sum rule, Eq. (3.41) has a much smaller uncertainty from

the high energy region, one gets from the RHS of this equation, 0.152 + 0.018ns. Thus

with ns as given from the fit the slope of the scalar form factor is λ0 = 0.0144 ± 0.0007.

The modulus of the normalized scalar form factor is depicted in Fig.6 for three different

values of the parameter ns keeping the value at the CT point fixed. These values gives a

violation of the sum rules by 15% for ns = 0.4 and 30% for ns = 1.25. The uncertainty due

to the high energy phase is much larger than in the vector form factor case, fortunately

the sum rules help reducing it sizeably. The form factor has a first small bump around the

K∗(890) resonance and a second one around the K∗(1410) one, the latter being more or less

pronounced depending on the value of ns. This behaviour agrees with older calculations of

the πK scalar form factor, see [27] as well as the recent work [29]. The τ data combined with

πK scattering plus constraints from the sum rules demand a somewhat stronger second

bump compared to the first one which compares also very well with [57]. The behaviour

of our form factor above ∼ 1.25 GeV is sensitive to the value of the parameter Λ as shown

– 22 –

Diogo Boito
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P-wave I=1/2 threshold parameters

Bernard, Kaiser, and Meissner, NP B357 (1991).

Bernard, Kaiser, and Meissner, NP B364 (1991).

Bijnens, Dhonte, and Talavera, JHEP 0405 (2004).

Buettiker, Descotes-Genon, and Moussallam, EPJC 33 (2004).
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s
Re tIl (s) =

1
2q

sin 2�I
l (q) = q2l

�
aI

l + bI
l q2 + cI

l q4 +O(q6)
⇥

Our results ChPT O(p4) [?] RChPT O(p4) [?] ChPT O(p6) [?] Roy-Steiner [?]
m3

� a1/2
1 � 10 0.166(5) 0.16(3) 0.18(3) 0.18 0.19(1)

m5
� b1/2

1 � 102 0.258(11) - - 0.18(2)
m7

� c1/2
1 � 103 0.90(4) - - 0.71(11)

EuroFlavour10 Munich 09.09.10

4
9)
3

iii. fits to tau data + constraints from Kl3

Bernard, Kaiser, Meissner’91 

Bernard, Kaiser, Meissner’91 

Bijnens, Dhonte, Talavera’04 

Buettiker, Descotes-Genon, Moussallam’04 
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•  Once one gets Kπ scattering amplitude 
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       analytical continuation into the complex plane  

    Poles on the second sheet correspond to zeros on the first sheet!  
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resonance pole 

E

Dispersive analytic continuation 

   Plot from M. Pennington 



Kπ scattering, P-wave 
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Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

�π scattering lengths: P-wave 
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Tau data 

τ � Kπντ  

   Boito, Escribano & Jamin’10 
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Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update

K ∗(892) I (JP ) = 1
2 (1−)

K∗(892) MASSK∗(892) MASSK∗(892) MASSK∗(892) MASS

CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE

892.6 ±0.5 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π−p

888 ±3 NAPIER 84 SPEC + 200 π− p → 2K0
S

X

891 ±1 NAPIER 84 SPEC − 200 π− p → 2K0
S

X

891.7 ±2.1 3700 BARTH 83 HBC + 70 K+ p → K0π+X

891 ±1 4100 TOAFF 81 HBC − 6.5 K− p → K0π− p

892.8 ±1.6 AJINENKO 80 HBC + 32 K+ p → K0π+X

890.7 ±0.9 1800 AGUILAR-... 78B HBC ± 0.76 pp → K∓K0
S

π±

886.6 ±2.4 1225 BALAND 78 HBC ± 12 pp → (K π)± X
891.7 ±0.6 6706 COOPER 78 HBC ± 0.76 pp → (K π)± X

891.9 ±0.7 9000 1 PALER 75 HBC − 14.3 K− p → (K π)−
X

892.2 ±1.5 4404 AGUILAR-... 71B HBC − 3.9,4.6 K− p →
(K π)−p

891 ±2 1000 CRENNELL 69D DBC − 3.9 K−N → K0 π−X

890 ±3.0 720 BARLOW 67 HBC ± 1.2 pp → (K0π)±K∓

889 ±3.0 600 BARLOW 67 HBC ± 1.2 pp → (K0π)±K π

891 ±2.3 620 2 DEBAERE 67B HBC + 3.5 K+ p → K0π+ p

891.0 ±1.2 1700 3 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 pp → K+ K−π0

890.4 ±0.2 ±0.5 80±0.8k 5 BIRD 89 LASS − 11 K− p → K0π− p

890.0 ±2.3 800 2,3 CLELAND 82 SPEC + 30 K+ p → K0
S

π+p

896.0 ±1.1 3200 2,3 CLELAND 82 SPEC + 50 K+ p → K0
S

π+p

893 ±1 3600 2,3 CLELAND 82 SPEC − 50 K+ p → K0
S

π−p

896.0 ±1.9 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p

886.0 ±2.3 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 p

894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π−p

894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p

892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− p

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
896.4 ±0.9 11970 11 BONVICINI 02 CLEO τ− → K−π0 ντ
895 ±2 12 BARATE 99R ALEP τ− → K−π0 ντ

HTTP://PDG.LBL.GOV Page 1 Created: 10/6/2015 12:30
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CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE

892.6 ±0.5 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π−p

888 ±3 NAPIER 84 SPEC + 200 π− p → 2K0
S

X

891 ±1 NAPIER 84 SPEC − 200 π− p → 2K0
S

X

891.7 ±2.1 3700 BARTH 83 HBC + 70 K+ p → K0π+X

891 ±1 4100 TOAFF 81 HBC − 6.5 K− p → K0π− p

892.8 ±1.6 AJINENKO 80 HBC + 32 K+ p → K0π+X

890.7 ±0.9 1800 AGUILAR-... 78B HBC ± 0.76 pp → K∓K0
S

π±

886.6 ±2.4 1225 BALAND 78 HBC ± 12 pp → (K π)± X
891.7 ±0.6 6706 COOPER 78 HBC ± 0.76 pp → (K π)± X

891.9 ±0.7 9000 1 PALER 75 HBC − 14.3 K− p → (K π)−
X

892.2 ±1.5 4404 AGUILAR-... 71B HBC − 3.9,4.6 K− p →
(K π)−p

891 ±2 1000 CRENNELL 69D DBC − 3.9 K−N → K0 π−X

890 ±3.0 720 BARLOW 67 HBC ± 1.2 pp → (K0π)±K∓

889 ±3.0 600 BARLOW 67 HBC ± 1.2 pp → (K0π)±K π

891 ±2.3 620 2 DEBAERE 67B HBC + 3.5 K+ p → K0π+ p

891.0 ±1.2 1700 3 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 pp → K+ K−π0

890.4 ±0.2 ±0.5 80±0.8k 5 BIRD 89 LASS − 11 K− p → K0π− p

890.0 ±2.3 800 2,3 CLELAND 82 SPEC + 30 K+ p → K0
S

π+p

896.0 ±1.1 3200 2,3 CLELAND 82 SPEC + 50 K+ p → K0
S

π+p

893 ±1 3600 2,3 CLELAND 82 SPEC − 50 K+ p → K0
S

π−p

896.0 ±1.9 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p

886.0 ±2.3 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 p

894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π−p

894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p

892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− p

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
896.4 ±0.9 11970 11 BONVICINI 02 CLEO τ− → K−π0 ντ
895 ±2 12 BARATE 99R ALEP τ− → K−π0 ντ

HTTP://PDG.LBL.GOV Page 1 Created: 10/6/2015 12:30
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update

NEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLY
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

895.4 ±0.2 ±0.2 243k 13 DEL-AMO-SA...11I BABR D+ → K−π+ e+ νe
895.7 ±0.2 ±0.3 141k 14 BONVICINI 08A CLEO D+ → K−π+π+

895.41±0.32+0.35
−0.43 18k 15 LINK 05I FOCS D+ → K−π+µ+ νµ

896 ±2 BARBERIS 98E OMEG 450 pp → pf ps K∗K∗

895.9 ±0.5 ±0.2 ASTON 88 LASS 11 K− p → K−π+ n

894.52±0.63 25k 1 ATKINSON 86 OMEG 20–70 γp

894.63±0.76 20k 1 ATKINSON 86 OMEG 20–70 γp

897 ±1 28k EVANGELIS... 80 OMEG 10 π− p → K+π− (Λ ,Σ)

898.4 ±1.4 1180 AGUILAR-... 78B HBC 0.76 pp → K∓K0
S

π±

894.9 ±1.6 WICKLUND 78 ASPK 3,4,6 K±N → (K π)0N

897.6 ±0.9 BOWLER 77 DBC 5.4 K+ d → K+ π− pp

895.5 ±1.0 3600 MCCUBBIN 75 HBC 3.6 K− p → K−π+n

897.1 ±0.7 22k 1 PALER 75 HBC 14.3 K− p → (K π)0 X

896.0 ±0.6 10k FOX 74 RVUE 2 K− p → K−π+ n

896.0 ±0.6 FOX 74 RVUE 2 K+ n → K+ π− p

896 ±2 16 MATISON 74 HBC 12 K+ p → K+π−∆

896 ±1 3186 LEWIS 73 HBC 2.1–2.7 K+ p → K ππp

894.0 ±1.3 16 LINGLIN 73 HBC 2–13 K+ p →
K+π−π+ p

898.4 ±1.3 1700 2 BUCHNER 72 DBC 4.6 K+ n → K+ π− p

897.9 ±1.1 2934 2 AGUILAR-... 71B HBC 3.9,4.6 K− p → K−π+ n

898.0 ±0.7 5362 2 AGUILAR-... 71B HBC 3.9,4.6 K− p →
K−π+π− p

895 ±1 4300 3 HABER 70 DBC 3 K−N → K−π+X

893.7 ±2.0 10k DAVIS 69 HBC 12 K+ p → K+π−π+ p

894.7 ±1.4 1040 2 DAUBER 67B HBC 2.0 K− p → K−π+π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

895.53±0.17 LEES 13F BABR D+ → K+ K−π+

894.9 ±0.5 ±0.7 14.4k 17 MITCHELL 09A CLEO D+
s

→ K+ K−π+

896.2 ±0.3 20k 8 AUBERT 07AK BABR 10.6 e+ e− →
K∗0K±π∓ γ

900.7 ±1.1 5900 BARTH 83 HBC 70 K+ p → K+π−X

HTTP://PDG.LBL.GOV Page 2 Created: 10/6/2015 12:30
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K∗(892) MASSK∗(892) MASSK∗(892) MASSK∗(892) MASS

CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE

892.6 ±0.5 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π−p

888 ±3 NAPIER 84 SPEC + 200 π− p → 2K0
S

X

891 ±1 NAPIER 84 SPEC − 200 π− p → 2K0
S

X

891.7 ±2.1 3700 BARTH 83 HBC + 70 K+ p → K0π+X

891 ±1 4100 TOAFF 81 HBC − 6.5 K− p → K0π− p

892.8 ±1.6 AJINENKO 80 HBC + 32 K+ p → K0π+X

890.7 ±0.9 1800 AGUILAR-... 78B HBC ± 0.76 pp → K∓K0
S

π±

886.6 ±2.4 1225 BALAND 78 HBC ± 12 pp → (K π)± X
891.7 ±0.6 6706 COOPER 78 HBC ± 0.76 pp → (K π)± X

891.9 ±0.7 9000 1 PALER 75 HBC − 14.3 K− p → (K π)−
X

892.2 ±1.5 4404 AGUILAR-... 71B HBC − 3.9,4.6 K− p →
(K π)−p

891 ±2 1000 CRENNELL 69D DBC − 3.9 K−N → K0 π−X

890 ±3.0 720 BARLOW 67 HBC ± 1.2 pp → (K0π)±K∓

889 ±3.0 600 BARLOW 67 HBC ± 1.2 pp → (K0π)±K π

891 ±2.3 620 2 DEBAERE 67B HBC + 3.5 K+ p → K0π+ p

891.0 ±1.2 1700 3 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 pp → K+ K−π0

890.4 ±0.2 ±0.5 80±0.8k 5 BIRD 89 LASS − 11 K− p → K0π− p

890.0 ±2.3 800 2,3 CLELAND 82 SPEC + 30 K+ p → K0
S

π+p

896.0 ±1.1 3200 2,3 CLELAND 82 SPEC + 50 K+ p → K0
S

π+p

893 ±1 3600 2,3 CLELAND 82 SPEC − 50 K+ p → K0
S

π−p

896.0 ±1.9 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p

886.0 ±2.3 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 p

894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π−p

894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p

892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− p

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
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892.6 ±0.5 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π−p

888 ±3 NAPIER 84 SPEC + 200 π− p → 2K0
S

X

891 ±1 NAPIER 84 SPEC − 200 π− p → 2K0
S

X
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890.7 ±0.9 1800 AGUILAR-... 78B HBC ± 0.76 pp → K∓K0
S

π±

886.6 ±2.4 1225 BALAND 78 HBC ± 12 pp → (K π)± X
891.7 ±0.6 6706 COOPER 78 HBC ± 0.76 pp → (K π)± X

891.9 ±0.7 9000 1 PALER 75 HBC − 14.3 K− p → (K π)−
X

892.2 ±1.5 4404 AGUILAR-... 71B HBC − 3.9,4.6 K− p →
(K π)−p

891 ±2 1000 CRENNELL 69D DBC − 3.9 K−N → K0 π−X

890 ±3.0 720 BARLOW 67 HBC ± 1.2 pp → (K0π)±K∓

889 ±3.0 600 BARLOW 67 HBC ± 1.2 pp → (K0π)±K π

891 ±2.3 620 2 DEBAERE 67B HBC + 3.5 K+ p → K0π+ p

891.0 ±1.2 1700 3 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 pp → K+ K−π0
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894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π−p

894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p

892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− p
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895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
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NEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLY
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

895.4 ±0.2 ±0.2 243k 13 DEL-AMO-SA...11I BABR D+ → K−π+ e+ νe
895.7 ±0.2 ±0.3 141k 14 BONVICINI 08A CLEO D+ → K−π+π+

895.41±0.32+0.35
−0.43 18k 15 LINK 05I FOCS D+ → K−π+µ+ νµ

896 ±2 BARBERIS 98E OMEG 450 pp → pf ps K∗K∗

895.9 ±0.5 ±0.2 ASTON 88 LASS 11 K− p → K−π+ n

894.52±0.63 25k 1 ATKINSON 86 OMEG 20–70 γp

894.63±0.76 20k 1 ATKINSON 86 OMEG 20–70 γp

897 ±1 28k EVANGELIS... 80 OMEG 10 π− p → K+π− (Λ ,Σ)

898.4 ±1.4 1180 AGUILAR-... 78B HBC 0.76 pp → K∓K0
S

π±

894.9 ±1.6 WICKLUND 78 ASPK 3,4,6 K±N → (K π)0N

897.6 ±0.9 BOWLER 77 DBC 5.4 K+ d → K+ π− pp

895.5 ±1.0 3600 MCCUBBIN 75 HBC 3.6 K− p → K−π+n

897.1 ±0.7 22k 1 PALER 75 HBC 14.3 K− p → (K π)0 X

896.0 ±0.6 10k FOX 74 RVUE 2 K− p → K−π+ n

896.0 ±0.6 FOX 74 RVUE 2 K+ n → K+ π− p

896 ±2 16 MATISON 74 HBC 12 K+ p → K+π−∆

896 ±1 3186 LEWIS 73 HBC 2.1–2.7 K+ p → K ππp

894.0 ±1.3 16 LINGLIN 73 HBC 2–13 K+ p →
K+π−π+ p

898.4 ±1.3 1700 2 BUCHNER 72 DBC 4.6 K+ n → K+ π− p

897.9 ±1.1 2934 2 AGUILAR-... 71B HBC 3.9,4.6 K− p → K−π+ n

898.0 ±0.7 5362 2 AGUILAR-... 71B HBC 3.9,4.6 K− p →
K−π+π− p

895 ±1 4300 3 HABER 70 DBC 3 K−N → K−π+X

893.7 ±2.0 10k DAVIS 69 HBC 12 K+ p → K+π−π+ p

894.7 ±1.4 1040 2 DAUBER 67B HBC 2.0 K− p → K−π+π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

895.53±0.17 LEES 13F BABR D+ → K+ K−π+

894.9 ±0.5 ±0.7 14.4k 17 MITCHELL 09A CLEO D+
s

→ K+ K−π+

896.2 ±0.3 20k 8 AUBERT 07AK BABR 10.6 e+ e− →
K∗0K±π∓ γ

900.7 ±1.1 5900 BARTH 83 HBC 70 K+ p → K+π−X
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•  The results coming from Roy-Steiner and data at higher energy not in 
agreement with low energy experimental data           need improvement!  
Problem: no other precise data  

 
•  Existence would suggest  
κ not a glueball  
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Figure 5: Plot of |S
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0 (s)|2 for complex values of s (in units of GeV2), computed from the
RSb representation (14).
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10

significantly outside of its strict domain of validity, we have found a difference of only
0.5 % in the pole position in comparison with the result from the RSb representation.

In table 1 we summarise the results of a few other determinations of the K∗
0 (800)

resonance parameters in the recent literature. These are derived from input experimental
data on πK scattering, except for the result of Aitala et al. [7] which is based on D → Kππ
decays and the one from Bugg [10] who uses the same data combined with BESS II data
on J/ψ → K∗(890)Kπ. Our results are compatible with those of [15, 16] who have
also employed dispersive methods. The mass which we find is lighter than in previous
calculations. A similar effect was observed in ref. [11] in the case of the σ and it was
traced to a more complete treatment of the left-hand cuts in Roy-type representations.

Mκ (MeV) Γκ (MeV)
This work 658 ± 13 557 ± 24
Zhou, Zheng [16] 694 ± 53 606 ± 89
Jamin et al. [18] 708 610
Aitala et al. [7] 721 ± 19 ± 43 584 ± 43 ± 87
Pelaez [19] 750 ± 18 452 ± 22
Bugg [9] 750+30

−55 684 ± 120
Ablikim et al. [20] 841 ± 23+64

−55 618 ± 52+55
−87

Ishida et al. [14] 877+65
−30 668+235

−110

Table 1: The mass and width of the K∗
0 (800) from our work and some other recent

determinations. Refs. [7, 20, 14] quote Breit-Wigner parameters from which we have
computed the corresponding pole positions.

3 Summary and outlook

It is quite likely that many exotic mesons (or baryons) exist in QCD which are not seen
simply because they have a very large width. In the case of the κ meson, we have demon-
strated that it is perfectly possible to prove the existence of such particles by combining
experimental data with some general theoretical constraints. Previously, the same conclu-
sion was derived in the case of the σ meson [11]. A major advantage of the methods used
here and in ref. [11] lies in the control of their range of validity as one moves away from the
physical energy region into the complex plane. No such control exists for naive parametri-
sations of the Breit-Wigner type or even for more sophisticated ones like chiral-unitarised
approaches.

The πK-scattering matrix in the S wave has been computed in the complex energy
plane using a Roy-Steiner dispersive representation. It is worth noting that in such a
representation, one must inject much more experimental information than just the S-wave
phase shifts (such as data on other πK and crossed-channel partial waves and the high
energy behaviour). Moreover, the available S-wave data does not cover the lower energy
range. In this region, unitarity provides extra information which can be combined with

13

σ
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J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

Fig. 37. Determinations of the /K ⇤
0 (700) pole in the complex plane as illustrated in [47]. Of course, the numbering of the references in [47] is not

the same as in here, which we provide next. In particular, Breit–Wigner parameterizations are taken from the RPP compilation [233] (called PDG
in [47]), which also includes: Descotes-Genon et al. [97], Bonvicini et al. [123], Bugg [321], Peláez [34], Zhou et al. [257] and the ‘‘Padé Result’’ [99].
The conformal CFD is the simple analytic extrapolation of our parameterization in [41]. The ‘‘PDG status’’ shaded rectangle covers the mass and
width estimate in the RPP. Our dispersive extractions of the /K ⇤

0 (700) pole are also included, using as input for the PWHDR either the UFD or CFD
parameterizations. Red and blue points use for the F� amplitude a once-subtracted or an unsubtracted dispersion relation, respectively. Notice that
even when using dispersive approaches the extraction is not fully stable, and the UFD values are inconsistent with one another and deviated by
around 2 � from the CFD ones. Only once Roy–Steiner equations are imposed as a constraint for the CFD parameterizations, both pole determinations
fall on top of each other, thus producing a negligible systematic uncertainty, as explained in the text.
Source: Figure taken from [47].

All pole positions listed in Fig. 37 are taken from the RPP [233], although there are many other values, like those
quoted just above. Most of these determinations (light gray) are simply Breit–Wigner parameters obtained as a result
of several fits to different processes. However, not only this is not a model-independent definition of a resonance
pole, but it is actually a wrong approximation. Recall that the Breit–Wigner formula is devised for narrow resonances
well isolated from other analytic features. From Fig. 20, it is evident that it is not suitable for a resonance so deep in
the complex plane, so close to a threshold and other singularities, and so close to the Adler zero imposed by chiral
symmetry. The spread of the results in Fig. 37 using a Breit–Wigner formalism speaks for itself about this inadequacy.
The rest of the results shown in the figure for the /K ⇤

0 (700) resonance include at least some basic features arising from
QCD [99,123,257,258,321,321–324]. Some others resort to the unitarization of ChPT either by using the N/D or Inverse
Amplitude Method (IAM) [23,25,26,34,102] (For recent reviews of ChPT unitarization see [13,218,221,222]). Generically,
these approximate the left-hand cut contributions at a given order in ChPT, and make use of dispersion relations to
unitarize the ChPT amplitude of a given order. An alternative way of implementing dispersion relations over ChPT in
this channel is the one of the Beijing group [208,257], which produces a rather stable result for the pole position. Finally
a very sound determination comes from the dispersive study of the Paris group [97]. Here the authors make use of a
solution to FTPWDR in [43] obtained without using data in that energy region for the S and P waves. Then they use that
solution as input into HPWDR to extract the /K ⇤

0 (700) resonance. It is also very relevant to remark that in their analysis
they showed that the /K ⇤

0 (700) pole lies within the applicability range of their choice of HPWDR.
On the lattice QCD front, this resonance has also been tackled recently, following developments in the calculation of

meson–meson scattering phase shifts, which we illustrated in Fig. 3. Unfortunately, the pole is not a direct observable, but
once again it has been extracted using models. Nevertheless, as can be seen in [100,287], at m⇡ ' 400 MeV the /K ⇤

0 (700)
appears as a virtual bound state, compatible with what we know from unitarized NLO ChPT [102,288]. However, using
lighter pion masses between 200 and 400 MeV the pole extraction becomes rather unstable [72], even though the basic
features of the partial wave are well described, as seen in Fig. 3. In the aforementioned work the Lüscher formalism [325]
was extensively used to produce many different energy levels for each pion mass, which produces a very constrained
result on the real axis. The authors of this study, when referring to lighter m⇡ , stated on the scalar wave that ‘‘Even
with precise information about the amplitude for real energies, the analytic continuation required to reach any pole is
sufficiently large that a unique result is not found’’ [72]. This supports our idea that a more elaborated, dispersive analysis
is needed at lower m⇡ to extract accurate information when performing analytic continuations. This same behavior can
be seen for the �/f0(500), where for heavier m⇡ the extraction is pretty stable [289], but becomes rather unstable for
pion masses near the physical one [74,288,326].

It is not so clear how large the effect of the Adler zero is when the pion mass is really heavy, and these resonances
appear as bound or virtual bound states. Nonetheless, the main problem when dealing with lighter extractions is that

75
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•  Inputs for S wave in Roy-Steiner analysis from LASS 
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Figure 4: Experimental values for the S-wave phases of the amplitude for charged πK
scattering measured in ref. [25].

exhibits a resonance as a zero on the first sheet as well as as a pole on the second sheet.
This fortunate property stems from the unitarity relation which can be recast, using the
analyticity properties, as an equation between the values of the amplitude on both sides
of the cut

f
1
2

l
(s − iϵ) − f

1
2

l
(s + iϵ) = 2i

√
(s − m2

+)(s − m2
−)

s
f

1
2

l
(s + iϵ)f

1
2

l
(s − iϵ) . (23)

This relation holds for real values of s along the elastic cut below the first inelastic thresh-
old. It can be translated into a relation for the S matrix

S
1
2

l
(s + iϵ)S

1
2

l
(s − iϵ) = 1 . (24)

Introducing a variable z = −
√

m2
+ − s which maps the first sheet of the s plane onto the

upper part of the z plane, we can rewrite eq. (24) as

S
1
2

l
(z)S

1
2

l
(−z) = 1 . (25)

The relation (25) holds on a finite portion of the positive real axis. By analytic contin-
uation, it must also hold everywhere in the complex z plane. This relation immediately
shows that a resonance pole z0 on the second Riemann sheet [Im (z0) < 0] is automatically

associated to a zero at −z0, which lies on the first sheet. Computing S
1
2

0 (s) from the RSb

representation described above for the central values of our experimental input, we find

that it does have a zero, S
1
2

0 (s0) = 0 with

s0 = 0.356 + i · 0.366 GeV2 . (26)

9
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•  Inputs for S wave in Roy-Steiner analysis from LASS 
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•  The results coming from Roy-Steiner and data at higher energy not in 

agreement with low energy experimental data           need improvement!   
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Figure 16: Same as fig. 15 for the I = 1
2 S-wave phase shift (curves in the upper half of the

figure) and the I = 3
2 S-wave phase shift (curves in lower half).

6.3 Results for threshold and sub-threshold expansion parameters

The behaviour of amplitudes at very small energies is conveniently characterized by sets of
expansion parameters, which are particularly useful for making comparisons with chiral expan-
sions. We consider first the set obtained by performing an expansion around the πK threshold.
These parameters are conventionally defined from the partial-wave amplitudes as follows

2√
s
Ref I

l (s) = q2l
(

aI
l + bI

l q
2 + cI

l q
4 + . . .

)

(94)

with

s = m2
+ +

m2
+q2

mπmK
−

m2
+m2

−q4

4m3
πm3

K

+ . . . (95)

Once a solution of the RS equations is obtained, all the threshold parameters are predicted. The
two S-wave scattering lengths are determined from the matching conditions, as explained above.
The other threshold parameters may be obtained from the dispersive representation eq. (20) in
the form of sum rules. These are obtained by projecting the DR’s over the relevant partial wave

34
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Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

�π scattering lengths: P-wave 
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Tau data 

τ � Kπντ  
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1.1   Introduction: 1.1  Test of New Physics : Vus 

•  Extraction of the Cabibbo-Kobayashi-Maskawa matrix element Vus 

Ø  Fundamental parameter of the Standard Model 
 
Description of the weak interactions: 

 
 

 
 
 
 
 

 
 
 

 

 

   
LEW = g

2
Wα

+ DLVCKMγ
αU L + eLγ

αν eL
+ µLγ

αν µL
+ τ Lγ

αντ L
( ) + h.c.

1.1   The Standard Model  

•  Theory that describes the strong and electroweak interactions 
!  Degrees of Freedom:  

" Quarks and Leptons  
" The gauge bosons:  

   W+/-, Z and A 

 
 
 

 
 
 
 

 

 

4 

Particle physics

Central question of QFT-based particle physics

L =?

i.e. which degrees of freedom, symmetries, scales ?

H Hi
gg

s

3 générations

SM best answer up to now, but
neutrino masses
dark matter
dark energy
baryon asymmetry of the
universe
hierarchy problem

S. Descotes-Genon (LPT) Heavy flavours 20/01/14 3

3 generations 
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•  The CKM Mechanism source of Charge Parity Violation in SM 
 

•  Unitary 3x3 Matrix, parametrizes rotation between mass and weak 
interaction eigenstates in Standard Model  

 
  
  

 
 

 

 

 

 
 

University of Zurich, 2016, May 9 Flavour anomalies & Belle II's impact on the physics landscape

The CKM Mechanism

The CKM Mechanism source of ChargeParityViolation in SM
• Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction 

eigenstates in Standard Model

• Fully parametrized by four parameters if unitarity holds: three real parameters 
and one complex phase that if non-zero results in CPV

• Unitarity can be visualized using triangle equations, e.g. 
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Precision measurement of |Vus| is a test of CKM unitarity

Vij: Mixing between Weak and Mass Eigenstates

• |Vud| = 0.97417 ± 0.00021 (from nuclear β decays) 

• |Vub| = (4.09 ± 0.39) x 10-3 (from B → Xu ℓ ν decays) 

 ⇒  |Vus|CKM = 0.22582 ± 0.00091



 Status on Vus and Vud Cabibbo angle anomaly 
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FIG. 1. Summary of constraints on Vud and Vus (assuming the Standard Model hypothesis) from

nuclear, nucleon, meson, and ⌧ lepton decays. For each constraint, the one-sigma uncertainty on

Vus or Vud is given in parenthesis (see text for details). The one-sigma ellipse from a global fit

(with �2/d.o.f. = 2.8), depicted in yellow, corresponds to Vud = 0.97357(27) and Vus = 0.22406(34),

implying �
CKM

= |Vud|2 + |Vus|2 � 1 = (�19.5± 5.3)⇥ 10�4.

where h = ⇡, K. An alternative method to test ⌧ � µ universality, similar to the µ� e case,

compares the electronic and muonic decay rates and can be expressed as

✓
A⌧

Aµ

◆

⌧

=

s

R⌧
⌧/µ

⌧µ
⌧⌧

m2

µ

m3

⌧

(1 + �W )(1 + ��) . (24)

In the above equations me,µ,⌧ are the masses of e, µ, and ⌧ , ⌧⌧,h are the lifetimes of the

particles ⌧ and h, and �h,W,� are the weak and electromagnetic radiative corrections (see

Ref. [94] and references therein for details). Experimentally, these tests have been carried

out at B-factories where, at the nominal center-of-mass energy of 10.58 GeV/c2, thanks to

a cross section of 0.919 nb, these machines are ”⌧ -Factories” de facto that produce large

numbers of ⌧ pairs.

Both the BaBar and the CLEO Collaborations performed the LFU tests according to

Eq. (22) [95] and Eq. (23) [96], while only CLEO performed the measurement according

Vus from kaon decays – M. Moulson, E. Passemar – CKM 2021 – University of Melbourne, 22-26 Nov 2021

Vus and CKM unitarity: All data
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Fit results, no constraint
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f+(0) = 0.9698(17),  fK/fπ = 1.1967(18)
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•  From kaon, pion, baryon and nuclear decays 
 

 

 
 Vud 
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n      peνe π     lνl   

Vus K      πlνl Λ      peνe  K       lνl   

Cabibbo universality tests

4

• Extract Vij from semileptonic processes (beta decays, …)

Channel-dependent 
effective CKM element

Hadronic matrix 
element Radiative corrections

The most precise determination of Vus comes from Kl3  
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•  Master formula for K → πlνl: K = {K+,K0}, l={e,µ} 
 

 
 

 
      

 
 

Experimental determination of Vus from kaon decays – M. Moulson (Frascati) – CKM 2014, Vienna, 8 September 2014"

K(P) π(p) 

ℓ"

ν 

Kℓ3 form factors"

17!

Ke3 decays: Only vector form factor:"

t = (P − p)2 

Hadronic matrix element:!

For Vus, need integral over phase space of squared matrix element:"
Parameterize form factors and fit distributions in t (or related variables)"

Kµ3 decays: Also need scalar form factor:!

•  Master formula for K → πlνl: 
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[ ]( ) ( )0
2 5 222

3 EM SU(2

2

)(
2

0 1)
19

K
EW

l
K

F K
K

l
u

K K
s

KfG m CK IVSl π ππ ν γ δ δ
π

−

+= +→ +Γ

( ) ( ) ( )K 0( )  s u K(p ) =  ( )  ( )K K
K K Kp p p p p f t p p f t

t t
π π

π µ π π πµ µ µ
π γ +

Δ Δ⎡ ⎤+ − − + −⎢ ⎥⎣ ⎦

vector scalar 
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Dispersive representation for the form factors 

•  Omnès representation:  

 

 
 
 
•  Subtract dispersion relation to weaken the high energy contribution of the 

phase. Improve the convergence but sum rules to be satisfied.   
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( )2th Ks m mπ≡ +

,0
,0

( ')'
( ) exp

' 'ths

ss dsf s
s s s i

φ
π ε

∞ +
+

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦∫

,0:  ( ) ( )in Ks s s sπφ δ+< =

Kπ scattering phase 

,0:  ( )ins s sφ+≥

,0 ,0( ) ( )ass sφ φ π π+ += = ± ( ),0( ) 1 /f s s+ →
[Brodsky&Lepage] 

ϕ+,0 (s): phase of the form factor 

Bernard, Oertel, E.P., Stern’06, ‘09 
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•  Ex: CP violating asymmetries: B → K* ll 
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Up: B ! K ⇤`` (2)

Theoretical control on the 7 B ! K ⇤ form factors
Light-cone sum rules and lattice QCD estimates
Effective theories: at low and large K ⇤ recoil

FF = soft form factors + O(↵s) + O(⇤QCD/mB)
with only 2 or 3 soft form factors and O(↵s) computable

Observables with limited sensitivity to form factor uncertainties
thanks to effective field theory relations (at large K ⇤ recoil, 6 Pi )

0 5 10 15 20

-0.4

-0.2

0.0

0.2

0.4

q2 HGeV2L

XP 2
\

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

q2 HGeV2L

XP 5¢
\

LHCb at EPS13 : 2.9 � discrepancy in P2, 4.0 � in P 0
5 !

[blue: SM unbinned, purple: SM binned, crosses: LHCb]

S. Descotes-Genon (LPT) Heavy flavours 20/01/14 31

Matthias et al’12 
Camalich&Jaeger’11 
Doering, Meissner, Wang’13 etc.. 

LHCb’17: 
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•  Ex: CP violation in D à Kππ 
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Heavy-meson Dalitz plots: hunting for CP violation

CP violation in partial widths Γ(P → f ) ̸= Γ(P̄ → f̄ )
• at least two interfering decay amplitudes
• different weak (CKM) phases
• different strong (final-state-interaction) phases

two-body decays: D → ππ, KK̄
• decay at fixed total energy −→ fixed
strong phase

three-body decays: D → 3π, ππK
• Dalitz plot =̂ density distribution in
two kinematical variables

• resonances −→ rapid phase
variation enhances CP violation in
parts of the decay region

F. Niecknig Dispersive analysis of D → Kππ 3 / 17

Ex: Dalitz plot 
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•  Ex: CP violation in D à Kππ 
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Two-particle rescattering
Full set of equations

S2ππ(u) = Ω20(u)
{

u2
∫

∞

4M2π

Ŝ2ππ (u′)
u′2(u′ − u)

dµ20

}

P1ππ(u) = Ω11(u)
{

c0 + c1u + u2
∫

∞

4M2π

P̂1ππ (u′)
u′2(u′ − u)

dµ11

}

S1/2πK (s) = Ω
1/2
0 (s)

⎧

⎨

⎩

c2 + c3s + c4s
2 + c5s

3 + s4
∫

∞

(MK+Mπ )2

Ŝ1/2πK (s′)

s′4(s′ − s)
dµ1/20

⎫

⎬

⎭

S3/2πK (s) = Ω
3/2
0 (s)

⎧

⎨

⎩

s2
∫

∞

(MK+Mπ )2

Ŝ3/2πK (s′)

s′2(s′ − s)
dµ3/20

⎫

⎬

⎭

P1/2πK (s) = Ω
1/2
1 (s)

⎧

⎨

⎩

c6 + s
∫

∞

(MK +Mπ )2

P̂1/2πK (s′)

s′(s′ − s)
dµ1/21

⎫

⎬

⎭

D1/2
πK (s) = Ω

1/2
2 (s)

⎧

⎨

⎩

∫

∞

(MK+Mπ )2

D̂1/2
πK (s′)

(s′ − s)
dµ1/22

⎫

⎬

⎭

inhomogeneities build up crossed-channel rescattering

⇒ remove dispersive integrals over inhomogeneities

F. Niecknig Dispersive analysis of D → Kππ 15 / 17

Niecknig & Kubis’15 
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•  Ex: CP violation in D à Kππ 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 

 

4.2   FSI in the quest for New Physics 

37 Emilie Passemar 

Experimental comparison I

Dalitz plot slices
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• full fit: χ2/ndof ≈ 1.1

F. Niecknig Dispersive analysis of D → Kππ 14 / 17

CLEO’08 

Niecknig & Kubis’15 
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•  Ex: CP violation in D à Kππ 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 

 

4.2   FSI in the quest for New Physics 

38 Emilie Passemar 

Experimental comparison I

fit fractions slices

Full fit
S2

ππ (8± 3)%
S1/2

πK (72± 12)%
P1/2

πK (10± 2)%
S3/2

πK (16± 3)%
D1/2

πK (0.15± 0.1)%
Σ (106± 20)%

50 100 150

200

400

600

800

400 500

200

400

bin number
• full fit: χ2/ndof ≈ 1.1

• fit fractions: hierachy of partial-wave amplitudes compare to previous
analyses

F. Niecknig Dispersive analysis of D → Kππ 14 / 17

Niecknig & Kubis’15 
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5.1  Conclusion 

Emilie Passemar 

•  Determining Kπ scattering reliably very important: 
–   Low energy: test of Chiral Dynamics 

–  Intermediate energy: Determination of Resonance parameters 

–  Very important to help taking into account final state interactions 
and hunting for new physics  
       CP violation in heavy meson decays  

•  Hadronic data on which most of the analyses rely not in good 
agreement with more recent data coming mainly from tau decays  

 worth remeasuring it.  
 
•  Possibility at Jlab with KL? 

Major advantage: pure I=1/2 measurement  
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5.2  Outlook 

Emilie Passemar 

•  Possibility at Jlab with KL? 
Major advantage: pure I=1/2 measurement 

•  Challenges: Extracting the Kpi phase shift from KN 
            Reliable interpolation at the pion pole 
 
•  Require a collaboration between theorists and experimentalists 
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