

On the importance of Kpi scattering for Phenomenology

Emilie Passemar Indiana University/Jefferson Lab./IFIC-Valencia

Physics Seminar Thomas Jefferson National Accelerator Facility Newport News, VA, November 10, 2022

- 1. Introduction and Motivation
- 2. Test of ChPT
- 3. Hadron spectroscopy
- 4. Test of the SM and new physics
- 5. Conclusion and outlook

1. Introduction and Motivation

1.1 Why $K\pi$ scattering is important?

- Hadron spectroscopy: determine resonances and their nature
 - P-wave: K*(892), K*(1410), K*(1680), ...
 - S-wave: "K(~800)", ...
 - Exotics,...
- $\pi\pi$ and $K\pi$ building blocks for hadronic physics:
 - Test of Chiral Dynamics
 - Extraction of fundamental parameters of the Standard Model
 - Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?

Very important when *Final State Interactions* at play!

1.2 Ex: Kπ scattering, P-wave

1.2 K π scattering from lattice QCD

Wilson, Briceno, Dudek, Edwards, Thomas'19 Adapted by Pelaez & Rodas'22

2. Using $K\pi$ scattering to test ChPT

Ex: $K\pi$ scattering, P-wave

• Limit $m_k \rightarrow 0$

$$\mathcal{L}_{QCD} \rightarrow \left[\mathcal{L}_{QCD}^{0} = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \overline{q}_{L} i \gamma^{\mu} D_{\mu} q_{L} + \overline{q}_{R} i \gamma^{\mu} D_{\mu} q_{R} \right], q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$
with $q_{L/R} \equiv \frac{1}{2} (1 \mp \gamma_{5}) q$

Symmetry:
$$G \equiv SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$$

- Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, pions, eta)
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

 $p \ll \Lambda_{H} = 4\pi F_{\pi} \sim 1 \text{ GeV}$

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

2.2 Chiral expansion

•
$$\mathcal{L}_{ChPT} = \underbrace{\mathcal{L}_{2}}_{\mathsf{C}} + \underbrace{\mathcal{L}_{4}}_{\mathsf{T}} + \underbrace{\mathcal{L}_{6}}_{\mathsf{T}} + \ldots$$

LO: $\mathcal{O}(p^{2})$ NLO: $\mathcal{O}(p^{4})$ NNLO: $\mathcal{O}(p^{6})$

- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants → LECs appearing at each order
- The method has been rigorously established and can be formulated as a set of calculational rules:

 $\mathcal{L}_4 = \sum_{i=1}^{10} \underline{L}_i O_4^i,$

 $\mathcal{L}_6 = \sum_{i=1}^{90} \frac{C_i}{C_i} O_6^i$

- LO: tree level diagrams with \mathcal{L}_2 $\mathcal{L}_2: F_0, B_0$
- NLO: tree level diagrams with \mathcal{L}_4 1-loop diagrams with \mathcal{L}_2
- NNLO: tree level diagrams with \mathcal{L}_{6} $\mathcal{L}_{6} =$ 2-loop diagrams with \mathcal{L}_{2} 1-loop diagrams with one vertex from \mathcal{L}_{4}
- Renormalizable and unitary order by order in the expansion

2.3 ChPT in the meson sector: precision calculations

- Today's standard in the meson sector: 2-loop calculations
- Main obstacle to reaching high precision: determination of the LECs: O(p⁶) LECs proliferation makes the program to pin down/ estimate all of them prohibitive
- In a specific process, only a limited number of LECs appear
- The LECs calculable if QCD solvable, instead
 - Determined from experimental measurement
 - Estimated with models: Resonances, large N_C
 - Computed on the lattice

2.4 Test of SU(3) ChPT

- Interesting framework to test ChPT is offered by the kaons: $K_{I3},\,K_{I4},\,K\to 3\pi,\,etc$
- A very interesting quantity is the scattering length: first term in the expansion:

$$\frac{2}{\sqrt{s}} \operatorname{Re} t_l^I(s) = \frac{1}{2q} \sin 2\delta_l^I(q) = q^{2l} \left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right]$$

• For $\pi\pi$: SU(2) ChPT very successful!

$\pi\pi$ scattering lengths

2.4 Test of SU(3) ChPT

- Interesting framework to test ChPT is offered by the kaons: $K_{I3},\,K_{I4},\,K\to 3\pi,\,etc$
- A very interesting quantity is the scattering length: first term in the expansion:

$$\frac{2}{\sqrt{s}}\operatorname{Re} t_l^I(s) = \frac{1}{2q}\sin 2\delta_l^I(q) = q^{2l}\left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6)\right]$$

- For $\pi\pi$: SU(2) ChPT very successful!
- What about SU(3) ChPT? In principle slower convergence if convergence at all!

$K\pi$ scattering lengths: S-wave

Roy-Steiner equations for $K\pi$

- Unitarity effects can be calculated *exactly* using dispersive methods
- Unitarity, analyticity and crossing symmetry = Roy-Steiner equations
- Input: Data on $K\pi \rightarrow K\pi$ and $\pi\pi \rightarrow KK$ for $E \ge 1$ GeV two subtraction constants, e.g. a_0^0 and a_2^0
- Output: the full Kπ scattering amplitude below 1 GeV
 In *poor* agreement with the experimental data
- Numerical solutions of the Roy-(Steiner) equations:
 - ππ: Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s) Bern group: Ananthanarayan et al.'00, Caprini et al.'11 Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern'01 Madrid-Cracow group: Garcia-Martin,et al.'11
 - Kπ: Buettiker, Descotes-Genon, Moussallam'04, Pelaez & Rodas'16 '22
 - KN: Ruiz de Elvira et al'15

$K\pi$ scattering lengths: S-wave

Pelaez & Rodas'22

Reference	$m_{\pi} a_0^{1/2}$	$m_{\pi} a_0^{3/2}$	Description
Büttiker et al. (2004) [43] Peláez-Rodas (2016) [41]	$\begin{array}{c} 0.224 \pm 0.022 \\ 0.220 \pm 0.010 \end{array}$	$-0.0448 \pm 0.0077 \\ -0.0540^{+0.010}_{-0.014}$	Dispersive Roy–Steiner Fit constrained with FDR
Bijnens–Ecker (2014) [86]	0.142	$\begin{array}{c} -0.071 \\ -0.064(-0.066) \\ -0.048(-0.047) \end{array}$	ChPT LO
Bijnens–Ecker (2014) [86]	0.173(0.169)		ChPT NLO fit 14 (free fit)
Bijnens–Ecker (2014) [86]	0.224(0.226)		ChPT NNLO fit 14 (free fit)
Miao et al. (2004) [87]	-	$\begin{array}{c} -0.056 \pm 0.023 \\ -0.0574 \pm 0.016^{+0.0024}_{-0.0058} \\ - \\ -0.0512 \pm 0.0018 \\ -0.060 \pm 0.006 \\ -0.059 \pm 0.002 \end{array}$	lattice, improved Wilson quenched
NPLQCD (2006) [88]	$0.1725 \pm 0.0017^{+0.0023}_{-0.0156}$		lattice. Domain-wall valence
Flynn–Nieves (2007) [89]	0.175 ± 0.017		lattice+Omnès Dispersion Relation
Fu (2012) [91]	0.1819 ± 0.0035		lattice, staggered, moving wall source
PACS-CS (2014) [92]	0.182 ± 0.053		lattice, improved Wilson
ETM (2018) [93]	-		lattice, twisted mass.

$K\pi$ scattering lengths: P-wave

$$\begin{aligned} \mathbf{K} \mathbf{\pi} \text{ scattering lengths: P-wave} \\ \frac{2}{\sqrt{s}} \frac{\mathrm{R} 2t_l^I(s)}{\sqrt{s}} \stackrel{=}{=} \frac{1}{t_{q}^I} \frac{\sin 2\delta_l^I(q)}{(s)} \stackrel{=}{=} \frac{1}{q^{2l}} \left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right] a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right] \\ \frac{2}{\sqrt{s}} \mathrm{Re} t_l^I(s) = \frac{1}{2q} \sin 2\delta_l^I(q) = q^{2l} \left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right] \end{aligned}$$

	Tau data	ChPT $\mathcal{O}(p^4)$	RChPT $\mathcal{O}(p^4)$	ChPT $\mathcal{O}(p^6)$	Roy-Steiner
$m_{\pi}^3 a_1^{1/2} \times 10$	0.166(4)	Our oregults	$\operatorname{Ch}_{\mathfrak{R}} \operatorname{F}_{\mathfrak{S}} \mathcal{O}(\mathfrak{S})$	(p^4) [?] ₁₈ R	$\operatorname{ChP}_{19}(p^4)$
$m_\pi^{\tilde{n}} a_\pi^{\tilde{1}/2} a_{\pi 10^2}^{1/2}$	$\times 0.298(9)$	0.166(4)	_0.16(3)	0.18(3)
$\hat{m_{\pi}^{n}}_{\pi} \hat{\boldsymbol{\mathcal{G}}_{\mathrm{T}}}^{1/2} \boldsymbol{\mathcal{b}}_{\mathrm{X}}^{1/23}$	$\times 10.90(3)$	0.258(9))			$0.71(\pm 1)$
$m_{\pi}^7 c_1^{1/2}$	$\times 10^3$	0.90(a)	_		_

Recent analysis combining K_{I3} , tau and D data : 0.249 ± 0.011 Bernard'14

Bernard, Kaiser, Meissner'91

- Bernard, Kaiser, Meissner'91
- Bijnens, Dhonte, Talavera'04
- Buettiker, Descotes-Genon, Moussallam'04
- Poor agreement piece need more data

3. Hadron spectroscopy

3.1 Determining of pole and width

• Once one gets $K\pi$ scattering amplitude

 \Rightarrow analytical continuation into the complex plane

Poles on the second sheet correspond to zeros on the first sheet!

Plot from M. Pennington

Dispersive analytic continuation

$K\pi$ scattering, P-wave

K*(892) MASS

CHARGED ONLY HADROPRODUCED

VALUE	(MeV)	EVTS	DOCUMENT ID	-	TECN	CHG	COMMENT
891.66	5±0.26 OUR	AVERAGE					
892.6	± 0.5	5840	BAUBILLIER	84 B	HBC	_	8.25 $K^- p \rightarrow \overline{K}^0 \pi^- p$
888	± 3		NAPIER	84	SPEC	+	$200 \pi^- p \rightarrow 2K_S^0 X$
891	± 1		NAPIER	84	SPEC	_	$200 \pi^{-} p \rightarrow 2K_{S}^{0} X$
891.7	± 2.1	3700	BARTH	83	HBC	+	70 $K^+ p \rightarrow K^0 \pi^+ X$
891	± 1	4100	TOAFF	81	HBC	_	$6.5 \ K^- p \rightarrow \overline{K}^0 \pi^- p$
892.8	± 1.6		AJINENKO	80	HBC	+	$32 \ \mathrm{K}^+ \mathrm{p} \rightarrow \ \mathrm{K}^0 \pi^+ \mathrm{X}$
890.7	± 0.9	1800	AGUILAR	78 B	HBC	±	$0.76 \ \overline{p}p \rightarrow \ K^{\mp} K^{0}_{S} \pi^{\pm}$
886.6	± 2.4	1225	BALAND	78	HBC	±	$12 \overline{p} p \rightarrow (K \pi)^{\pm} X$
891.7	± 0.6	6706	COOPER	78	HBC	±	$0.76 \ \overline{p} p \rightarrow \ (K \pi)^{\pm} X$
891.9	± 0.7	9000	PALER	75	HBC	-	$14.3 K^{-} p \rightarrow (K\pi)^{-}$
892.2	± 1.5	4404	AGUILAR	71 B	HBC	-	$\begin{array}{c} & & \\ 3.9, 4.6 \ K^{-} \ p \rightarrow \\ & (K \pi)^{-} \ p \end{array}$
891	± 2	1000	CRENNELL	69D	DBC	_	$3.9 \ K^- N \rightarrow K^0 \pi^- X$
890	± 3.0	720	BARLOW	67	HBC	±	$1.2 \overline{p} p \rightarrow (\kappa^0 \pi)^{\pm} \kappa^{\mp}$
889	± 3.0	600	BARLOW	67	HBC	±	$1.2 \overline{p} p \rightarrow (K^0 \pi)^{\pm} K \pi$
891	± 2.3	620 2	² DEBAERE	67 B	HBC	+	$3.5 \ K^+ p \rightarrow \ K^0 \pi^+ p$
891.0	± 1.2	1700 3	³ WOJCICKI	64	HBC	_	$1.7 \ K^{-} p \rightarrow \overline{K}^{0} \pi^{-} p$
• • •	We do not u	se the follow	ing data for av	erage	s, fits, l	imits,	etc. • • •
893.5	± 1.1	27k 4	¹ ABELE	99 D	CBAR	±	$0.0 \overline{p} p \rightarrow K^+ K^- \pi^0$
890.4	$\pm 0.2\ \pm 0.5$	80±0.8k ⁵	BIRD	89	LASS	_	$11 \ K^- p \rightarrow \overline{K}^0 \pi^- p$
890.0	± 2.3	800 2,3	³ CLELAND	82	SPEC	+	$30 \ K^+ p \rightarrow \ K^0_{S} \pi^+ p$
896.0	± 1.1	3200 2,3	³ CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K^{0}_{S} \pi^+ p$
893	± 1	3600 2,3	³ CLELAND	82	SPEC	_	50 $K^+ p \rightarrow K_{S}^{0} \pi^- p$
896.0	± 1.9	380	DELFOSSE	81	SPEC	+	$50 \ \mathrm{K}^{\pm} p \rightarrow \ \mathrm{K}^{\pm} \pi^{0} p$
886.0	± 2.3	187	DELFOSSE	81	SPEC	_	$50 \ \mathrm{K}^{\pm} \mathrm{p} \rightarrow \ \mathrm{K}^{\pm} \pi^0 \mathrm{p}$
894.2	± 2.0	765 2	² CLARK	73	HBC	_	$3.13 \ K^- p \rightarrow \overline{K}^0 \pi^- p$
894.3	± 1.5	1150 2,3	³ CLARK	73	HBC	_	$3.3 \ K^- p \rightarrow \overline{K}^0 \pi^- p$
892.0	± 2.6	341 2	² SCHWEING	.68	HBC	_	5.5 $K^- p \rightarrow \overline{K}^0 \pi^- p$

CHARGED ONLY. PRODUCED IN τ LEPTON DECAYS

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT			
895.47	7±0.20±0.74	53k	⁶ EPIFANOV	07	BELL	$\tau^- \rightarrow K_S^0 \pi^- \nu_{\tau}$			
• • •	We do not use th	e follow	ing data for averages	, fits,	limits, e	etc. • • •			
892.0	± 0.5		⁷ ВОІТО	10	RVUE	$\tau^- \rightarrow K^0_S \pi^- \nu_\tau$			
892.0	± 0.9		^{8,9} BOITO	09	RVUE	$\tau^- \rightarrow K_S^{0} \pi^- \nu_{\tau}$			
895.3	± 0.2		^{8,10} JAMIN	08	RVUE	$\tau^- \rightarrow K^{\bar{0}}_{S} \pi^- \nu_{\tau}$			
896.4	± 0.9	11970	¹¹ BONVICINI	02	CLEO	$\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$			
895	± 2		¹² BARATE	99 R	ALEP	$\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$			

NEUTRAL ONLY VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT **895.81±0.19 OUR AVERAGE** Error includes scale factor of 1.4. See the ideogram below.

$895.41 {\pm} 0.32 {+} 0.35 \\ {-} 0.43$	18k	¹⁵ LINK	051	FOCS	$D^+ \rightarrow K^- \pi^+ \mu^+ \nu_\mu$
896 ±2		BARBERIS	98E	OMEG	450 $pp \rightarrow p_f p_s K^* \overline{K}^*$
$895.9\ \pm 0.5\ \pm 0.2$		ASTON	88	LASS	$11 \ K^- p \rightarrow \ K^- \pi^+ n$

Emilie Passemar

PDG 22

3.2 $K^*(892)$ mass and width

K*(892) MASS

PDG 22

CHARGED ONI	Y, HADR	OPRODUCE	D									
VALUE (MeV)	EVTS	DOCUMENT IL	D	TECN	CHG	COMMENT	CHARGED ONLY	, prod	UCED IN $ au$ Lep		DECAYS)
891.66 ± 0.26 OUR	AVERAGE						VALUE (MeV)	EVTS	DOCUMENT I	D	TECN	COMMENT
892.0 ±0.5 888 ±3	5640	BAUBILLIEF NAPIER	R 84B 84	HBC SPEC	- +	8.25 $K^- p \rightarrow K^0 r p$ 200 $\pi^- p \rightarrow 2K_0^0 X$	895.47±0.20±0.74	53k	⁶ EPIFANOV	07	BELL	$\tau^- \rightarrow K_S^0 \pi^- \nu_{\tau}$
891 ±1		NAPIER	84	SPEC	_	$200 \pi^- p \rightarrow 2K_c^0 X$	• • • We do not use	the follow	ving data for averag	ges, fits,	limits, e	tc. • • •
891.7 ± 2.1	3700	BARTH	83	HBC	+	70 $K^+ p \rightarrow K^0 \pi^+ X$	892.0 +0.5		⁷ воіто	10	RVUE	$\tau^- \rightarrow K_c^0 \pi^- \nu$
891 ±1	4100	TOAFF	81	HBC	_	$6.5 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$			89 00170			$- \mu 0 -$
892.8 ± 1.6		AJINENKO	80	HBC	+	32 $K^+ p \rightarrow K^0 \pi^+ X$	892.0 ± 0.9		o'a BOLLO	09	RVUE	$\tau \rightarrow K_{S}^{0}\pi \nu_{\tau}$
890.7 ± 0.9	1800	AGUILAR	78 B	HBC	±	0.76 $\overline{p}p \rightarrow K^{\mp}K^{0}_{S}\pi^{\pm}$	895.3 ± 0.2		^{8,10} JAMIN	08	RVUE	$\tau^- \rightarrow K^0_S \pi^- \nu_\tau$
886.6 ± 2.4	1225	BALAND	78	HBC	±	$12 \overline{p} p \rightarrow (K \pi)^{\pm} X$	8964 +09	11070	11 BONVICINI	02	CLEO	$\tau^- \rightarrow \kappa^- \pi^0 \nu$
891.7 ± 0.6	6706	COOPER	78	HBC	±	0.76 $\overline{p}p \rightarrow (K\pi)^{\pm} X$	000.1 ±0.0	11570		02		- $ -$
891.9 ± 0.7	9000	¹ PALER	75	HBC	—	$\begin{array}{ccc} 14.3 \ K^{-} \ p \rightarrow \ (K \pi)^{-} \\ X \end{array}$	895 ±2		¹² BARATE	99R	ALEP	$\tau \rightarrow K \pi^{\circ} \nu_{\tau}$
892.2 ±1.5	4404	AGUILAR	71 B	HBC	_	3.9,4.6 $K^- p \rightarrow (K\pi)^- p$						
891 ±2	1000	CRENNELL	69 D	DBC	_	$3.9 \ K^- N \rightarrow \ K^0 \pi^- X$	NEUTRAL ONLY					
890 ±3.0	720	BARLOW	67	HBC	±	$1.2 \overline{p} p \rightarrow (K^0 \pi)^{\pm} K^{\mp}$	VALUE (MoV)	FVTS	DOCUMENT ID	TECN	COMMEN	Г
889 ±3.0	600	BARLOW	67	HBC	±	$1.2 \overline{p} p \rightarrow (K^0 \pi)^{\pm} K \pi$	895.81±0.19 OUR A	/ERAGE	Prror includes scale f	actor of	1.4. See tl	ne ideogram below.
891 ±2.3	620	² DEBAERE	67 B	HBC	+	$3.5 \ K^+ p \rightarrow \ K^0 \pi^+ p$	$8054 \pm 0.2 \pm 0.2$	2436 13		BARR	D+ →	$K^{-}\pi^{+}a^{+}\mu$
891.0 ± 1.2	1700	³ WOJCICKI	64	HBC	_	1.7 $K^- p \rightarrow \overline{K}^0 \pi^- p$	$095.4 \pm 0.2 \pm 0.2$	243n 1411 14			$D^+ \rightarrow D^+$	$\nu - + +$
• • • We do not u	ise the follow	/ing data for a	verage	es, fits, l	limits,	etc. • • •	895.7 ±0.2 ±0.3	141K -	BUNVICINI USA	CLEU	$D \rightarrow$	Ν π'π'
893.5 ± 1.1	27k	⁴ ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow K^+ K^- \pi^0$	$895.41 \pm 0.32 \substack{+0.35 \\ -0.43}$	18k ¹⁹	LINK 05	FOCS	$D^+ \rightarrow$	$K^- \pi^+ \mu^+ \nu_\mu$
$890.4 \pm 0.2 \pm 0.5$	$80{\pm}0.8k$	⁵ BIRD	89	LASS	_	$11 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$	896 ±2		BARBERIS 98E	OMEG	450 pp-	$\rightarrow p_f p_c K^* \overline{K}^*$
890.0 ± 2.3	800 2,	³ CLELAND	82	SPEC	+	$30 \ K^+ p \rightarrow \ K^0_{S} \pi^+ p$	$8050 \pm 05 \pm 02$		ASTON 88		11 K ⁻ n	$\rightarrow K^{-}\pi^{+}n$
896.0 ±1.1	3200 2,	³ CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K^{0}_{S} \pi^+ p$	000.0 ±0.0 ±0.2	-		L/(33	iin p	
893 ±1	3600 2,	³ CLELAND	82	SPEC	_	50 $K^+ p \rightarrow K^{0}_{S} \pi^- p$						
896.0 ±1.9	380	DELFOSSE	81	SPEC	+	50 $K^{\pm} p \rightarrow K^{\pm} \pi^0 p$						
886.0 ±2.3	187	DELFOSSE	81	SPEC	_	50 $K^{\pm} p \rightarrow K^{\pm} \pi^{0} p$						
894.2 ±2.0	765	² CLARK	73	HBC	_	3.13 $K^- p \rightarrow \overline{K}^0 \pi^- p$						
894.3 ±1.5	1150 2,	³ CLARK	73	HBC	_	3.3 $K^- p \rightarrow \overline{K}^0 \pi^- p$						
892.0 ±2.6	341	² SCHWEING.	68	HBC	_	5.5 $K^- p \rightarrow \overline{K}^0 \pi^- p$						

PDG 22

Mass of K* (892) [MeV]

Emilie Passemar

26

PDG 22

Decay width of K* (892) [MeV]

The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data _____ need improvement! Problem: no other precise data

Descotes-Genon. Moussallam'06

Buettiker, Descotes and Moussallam'04

• Inputs for S wave in Roy-Steiner analysis from LASS

Buettiker, Descotes and Moussallam'04

• Inputs for S wave in Roy-Steiner analysis from LASS

4. Tests of the SM and new physics

$K\pi$ scattering, P-wave

4.1 Determination of fundamental parameters: V_{us}

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element V_{us}
 - Fundamental parameter of the Standard Model

Description of the weak interactions:

$$\mathcal{L}_{EW} = \frac{g}{\sqrt{2}} W_{\alpha}^{+} \left(\overline{D}_{L} V_{CKM} \gamma^{\alpha} U_{L} + \overline{e}_{L} \gamma^{\alpha} v_{e_{L}} + \overline{\mu}_{L} \gamma^{\alpha} v_{\mu_{L}} + \overline{\tau}_{L} \gamma^{\alpha} v_{\tau_{L}} \right) + \text{h.c.}$$

4.1 Determination of fundamental parameters: V_{us}

- The CKM Mechanism source of *Charge Parity Violation* in SM
- Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Weak Eigenstates CKM Matrix Mass Eigenstates

Status on \mathbf{V}_{us} and \mathbf{V}_{ud} Cabibbo angle anomaly

Moulson, E.P. @CKM2021

$$|V_{ud}| = 0.97373(31)$$
$$|V_{us}| = 0.2231(6)$$
$$|V_{us}|/|V_{ud}| = 0.2311(5)$$

Fit results, no constraint

$$V_{ud} = 0.97365(30)$$

$$V_{us} = 0.22414(37)$$

$$\chi^{2}/ndf = 6.6/1 (1.0\%)$$

$$\Delta_{CKM} = -0.0018(6)$$

$$-2.7\sigma$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$
Negligible ~2x10⁻⁵

(B decays)

Paths to \mathbf{V}_{ud} and \mathbf{V}_{us}

• From kaon, pion, baryon and nuclear decays

$$\begin{array}{c|c} \hline C_{a}bjbo \text{ universality tests} \\ \hline V_{ud} & \pi^{\pm} \rightarrow \pi^{0}ev_{e} & n \rightarrow pev_{e} & \pi \rightarrow lv_{l} \\ \hline V_{us} & K \rightarrow \pi lv_{l} & \Lambda \rightarrow pev_{e} & K \rightarrow lv_{l} \\ \hline \end{array}$$

$$\Gamma_{k} = (G_{F}^{(\mu)})^{2} \times |V_{ij}|^{2} \times |M_{had}|^{2} \times (1 + \delta_{RC}) \times F_{kin}$$

Channel-dependent effective CKM element Hadronic matrix element

Radiative corrections

The most precise determination of Vus comes from K_{I3}

4.1 Determination of fundamental parameters:
$$\mathbf{V}_{us}$$

• Master formula for $\mathbf{K} \to \pi \mathbf{I} \mathbf{v}_{|}$: $\mathbf{K} = \{\mathbf{K}^{+}, \mathbf{K}^{0}\}, \mathbf{I} = \{\mathbf{e}, \mu\}$

$$\mathbf{\Gamma}\left(\mathbf{K} \to \pi t \mathbf{v}[\gamma]\right) = \frac{G_{F}^{2} m_{K}^{5}}{192\pi^{3}} C_{K}^{2} S_{E}^{K} \left|\mathbf{V}_{us}\right|^{2} f_{+}^{K^{0}\pi^{-}}(\mathbf{0})|^{2} I_{K}^{t} \left(1 + \delta_{EM}^{Kt} + \delta_{SU(2)}^{K}\right)^{2}$$

$$\frac{\left\langle \pi(p_{\pi}) \mid \bar{\mathbf{s}}\gamma_{\mu}\mathbf{u} \mid \mathbf{K}(\mathbf{p}_{K}) \right\rangle = \left[\left(p_{K} + p_{\pi}\right)_{\mu} - \frac{\Delta_{K\pi}}{t} \left(p_{K} - p_{\pi}\right)_{\mu} \right] f_{+}^{t}(t) + \frac{\Delta_{K\pi}}{t} \left(p_{K} - p_{\pi}\right)_{\mu} f_{0}^{t}(t) + \frac{\Delta_{K\pi}}{t} \left(p_{K} - p_{K}\right)_{\mu} f_{0}^{t}(t) + \frac{\Delta_{K\pi}}{t} \left(p_{K} -$$

Dispersive representation for the form factors

Omnès representation:

• Subtract dispersion relation to weaken the high energy contribution of the phase. Improve the convergence but sum rules to be satisfied.

Bernard, Oertel, E.P., Stern'06. '09

• Ex: CP violating asymmetries: $B \rightarrow K^* II$

Matthias et al'12 Camalich&Jaeger'11 Doering, Meissner, Wang'13 etc..

[blue: SM unbinned, purple: SM binned, crosses: LHCb]

• Ex: CP violation in D \rightarrow K $\pi\pi$

• Ex: CP violation in D \rightarrow K $\pi\pi$

Niecknig & Kubis'15

Full set of equations

$$\begin{split} S_{\pi\pi}^{2}(u) &= \Omega_{0}^{2}(u) \left\{ u^{2} \int_{4M_{\pi}^{2}}^{\infty} \frac{\hat{S}_{\pi\pi}^{2}(u')}{u'^{2}(u'-u)} d\mu_{0}^{2} \right\} \\ P_{\pi\pi}^{1}(u) &= \Omega_{1}^{1}(u) \left\{ c_{0} + c_{1}u + u^{2} \int_{4M_{\pi}^{2}}^{\infty} \frac{\hat{P}_{\pi\pi}^{1}(u')}{u'^{2}(u'-u)} d\mu_{1}^{1} \right\} \\ S_{\piK}^{1/2}(s) &= \Omega_{0}^{1/2}(s) \left\{ c_{2} + c_{3}s + c_{4}s^{2} + c_{5}s^{3} + s^{4} \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{S}_{\piK}^{1/2}(s')}{s'^{4}(s'-s)} d\mu_{0}^{1/2} \right\} \\ S_{\piK}^{3/2}(s) &= \Omega_{0}^{3/2}(s) \left\{ s^{2} \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{S}_{\piK}^{3/2}(s')}{s'^{2}(s'-s)} d\mu_{0}^{3/2} \right\} \\ P_{\piK}^{1/2}(s) &= \Omega_{1}^{1/2}(s) \left\{ c_{6} + s \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{P}_{\piK}^{1/2}(s')}{s'(s'-s)} d\mu_{1}^{1/2} \right\} \\ D_{\piK}^{1/2}(s) &= \Omega_{2}^{1/2}(s) \left\{ \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{D}_{\piK}^{1/2}(s')}{(s'-s)} d\mu_{2}^{1/2} \right\} \end{split}$$

• Ex: CP violation in D \rightarrow K $\pi\pi$

Dalitz plot

Niecknig & Kubis'15

slices

CLEO'08

• full fit: $\chi^2/\text{ndof} \approx 1.1$

• Ex: CP violation in D \rightarrow K $\pi\pi$

fit fractions

slices

- full fit: $\chi^2/\text{ndof} \approx 1.1$
- fit fractions: hierachy of partial-wave amplitudes compare to previous analyses

5. Conclusion and outlook

5.1 Conclusion

- Determining $K\pi$ scattering reliably very important:
 - Low energy: test of Chiral Dynamics
 - Intermediate energy: Determination of Resonance parameters
 - Very important to help taking into account final state interactions and hunting for new physics
 CP violation in heavy meson decays
- Hadronic data on which most of the analyses rely not in good agreement with more recent data coming mainly from tau decays
 worth remeasuring it.
- Possibility at Jlab with K_L? Major advantage: pure I=1/2 measurement

5.2 Outlook

- Possibility at Jlab with K_L? Major advantage: pure I=1/2 measurement
- Challenges: Extracting the Kpi phase shift from KN
 Reliable interpolation at the pion pole
- Require a collaboration between theorists and experimentalists