Status of Temperature Calculations with Mathematica

Hovanes Egiyan

"BC-65-m23" Test Summary (Vitaly)

Test Configuration Name	R _{max} (cm)	φ _{max} (deg)	Z _{max} (cm)	T _{max} (°C)	T _{cold} (°C)	Maximum power (KW/cm ³)	
All Nominal $(\sigma^{(x,y)}_{beam} = 1 \text{ mm, 4 holes})$	0.32	-90	135	90	50	2.9	
$\sigma^{(x,y)}_{beam}$ = 1/3 mm	0.32	-90	140	135	55	8	
$\sigma^{(x,y)}_{beam}$ = 1.5mm							
90% B-field	0.32	-90	150	88	50	2.5	
110% B-field	0.32	-90	120	102	55	7	
-1mm shift in Y							
+1mm shift in Y							
-0.5mrad angle in Y	0.32	-90	100	110	50	3.7	
+0.5mrad angle in Y	0.65	-90	355	100*	50	2.2	
+1mm shift in X							
+0.5mrad angle in X	0.32	245	120	90	50	3	
20% radiator thickness	0.32	-90	115	90	50	2.3	

Nominal, cylindrical, short in Z	0.32	-90	120	100	50	3.4
Nominal, rectangular, short in Z	0.32	-90	120	95	50	2.9

Summary of Analysis for "BC-65-m23" Tests (Vitaly)

- I continued analyzing Vitaly's FLUKA data with power depositions with different test configurations.
 - I used water temperature T_{water} =40 °C with cooling holes offset at (x,y)=(±5,±7)cm for these analyses.
 - The resulting temperature at the nominal conditions is T_{max} =90 °C.
 - This number was observed for both solving the cylindrical data with both rectangular and cylindrical solver.
 - Today's cylindrical and rectangular grid data for systematic checks resulted in T_{max}=100 °C for cylindrical and T_{max}=95 °C.
- All test with realistic parameters so far produced temperatures T_{max}<150 ^oC in the absorber using cylindrical grid for FLUKA data and cylindrical coordinates for the equation solver.
- There is a discrepancy or improvement with the results from February model calculations that provided T_{max} =245 °C.
 - The February number was the same for my and Tim's thermal analysis, both using rectangular grid.
 - The discrepancy is likely indicative of the uncertainties for the temperature determination.
- I tried to understand the discrepancy by comparing to the February results.
 - Using rectangular coordinates for cylindrical grid data from FLUKA I calculated the temperature that would be present if the absorber was designed as in February: narrow and with two cooling holes.
 - "Nominal" beam provides T_{max} =180 °C , while "very narrow" beam provides 270 °C.
 - Using cylindrical coordinates for cylindrical grid data from FLUKA I calculated the temperature that would be present if the absorber was designed as in February: narrow and with two cooling holes.
 - "Nominal beam" provides T_{max} =135 °C, "very narrow" beam provides 210°C, "90% B-field" 120 °C, "110% B-field" 140 °C.
 - The discrepancy is T_{max} =135 °C / 180 °C versus T_{max} =245 °C for nominal settings.
 - Asked Vitaly for 33% higher than nominal B-field with rectangular and cylindrical grids.
- We should design strain reduction features for this model.
- The electron beam and photon beam positions will need to be interlocked.

KLCPS69 Test Summary (Pavel)

Test Configuration Name	Hot Spot Location Section	R _{max} (cm)	ϕ_{max} (deg)	Z _{max} (cm)	T _{max} (°C)	T _{cold} (°C)	Maximum power (KW/cm ³)
All Nominal $(\sigma^{(x,y)}_{beam} = 1 \text{ mm}, 4 \text{ holes})$	Keyhole	0.04	+90	37	200	55	7
$\sigma^{(x,y)}_{beam}$ = 0.33 mm	Keyhole	0.1	+90	43	250	65	14
$\sigma^{(x,y)}_{beam} = 1.5 mm$	Keyhole	0.2	+90	8.5	205	55	5
97% B-field	Circular	0.15	+90	58.5	205	60	8
103% B-field	Keyhole	0.1	+90	33	200	55	7
-1mm shift in Y	Keyhole	0.2	+90	8	220	60	7
+1mm shift in Y	Circular	0.1	+90	57	225	60	6.5
-0.5mrad angle in Y	Keyhole	0.2	+90	8.5	220	60	6.5
+0.5mrad angle in Y	Circular	0.15	+90	58	235	60	7
+1mm shift in X	Keyhole	0.5	+70	7.5	245	60	6
+0.5mrad angle in X	Keyhole	0.45	+70	8	250	60	6

All using cylindrical grid data and cylindrical coordinates in the solver

Summary of Analysis for KLCPS69 Tests (Pavel)

- I looked at all the tests that Pavel did with KLCPS69 model to estimate the temperature in the absorber.
 - I used water temperature T_{water} =40 °C with cooling holes offset at (x,y)=(±7,±7)cm for these analyses.
 - The pipes are a little further away from the hot spot than what I had for Viltay's model.
 - The resulting temperature at the nominal conditions is T_{max}=200 ^oC based on the cylindrical grid calculations.
 - Rectangular grid calculations in Mathematica gives T_{max}=230 ^oC. Waiting on ANSYS.
 - With a smaller absorber with X-section 5cm x 5cm and by cooling full outside surface of the absorber, I get T_{max} =170 °C.
- All tests with realistic parameters produce T_{max} <250 °C in the absorber (cylindrical grid).
 - The highest values are T_{max} =250 °C for beam with σ = 0.33mm, and with 0.5mrad angled beam in the horizontal direction.
- We should design strain reduction features for this model
 - Assume that the temperature in the absorber will be around 250 °C.
 - The absorber design should allow for temperatures of 350 °C.
 - Pavel has five slits there for strain relief, but it is probably will not be sufficient.
 - We need to simulate in FLUKA a version with 1mm slits every 2cm along the beamline.
- The beam should be interlocked such that:
 - 1. The electron beam position at BPMs before CPS does not move more than 1mm from the nominal
 - 2. The photon beam position does not shift by more than 5mm at the KPT
 - Need to design and build a device like GlueX Active Collimator.
 - 3. Temperature at the beginning and the end of the keyhole cavity should be below 250 °C.
 - We'll need radiation resistant temperature sensors implanted in the absorber.

□ If the conditions above are not satisfied, the beam is shut off by FSD.

Conclusions

- Temperatures in the absorber for all currently available tests from Pavel have been calculated.
 - They all provide maximum temperatures below T_{max}<250 ^oC based on cylindrical grid data.
- Although the thermal analyses of all tests from Vitaly are not complete, I have some rough idea what they will be.
 - It looks pretty good, there seem to be some uncertainties.
 - I will continue working on these data.
- Both CPS configurations, in my opinion, will need to have thermal stress reduction scheme for the absorber.
 - This will need to be designed and tested next month.
 - We will need this for the review in August.
 - This will require some effort from Tim.
 - FLUKA-to-ANSYS iterations will need to be done.
- Need to move on to radiation environement, costs/weights, and photon beam quality evaluations.