Design of a Fast Photon Beam Position Monitor for the KLF beamline

Richard Jones, University of Connecticut, for the GlueX collaboration

Klong Facility collaboration meeting September 19, 2023, Newport News

Design overview

- Tungsten pin-cushion detector
 - original design developed at SLAC in 1970's, Miller and <u>Walz</u>, NIM 117 (1974) 33-37.
 - adapted by GlueX for use as Hall D polarized photon beam "active collimator".
 - current device not suitable for KLF beamline, *but*
 - a new device based on the same operating principles and similar geometry would serve the needs of KLF.

Design requirements

• Be target radius

 $r_{clearance} \ge 30 \text{ mm}$

• Be target photon beam intensity

 $I_{KLF} \leq 10^4 \text{ x } I_{GluexII}$

• Position resolution

 $\Delta x = \Delta y \leq 1 \text{ mm}$

• Dynamic range

$$I_{min} \leq 10^{-4} I_{max}$$

• Response time

 $\tau \leq 1 \text{ ms}$

based on early CPS model design, Nuclear Inst. and Methods in Physics Research, A 957 (2020) 163429

projections based on known performance of the GlueX active collimator

GlueX active collimator design

GlueX active collimator design

Active collimator simulation

Tungsten pin construction

Pin cushions fabricated using electrical discharge machining (EDM)

- pure tungsten too brittle, pins snap off during fab.
- machinable tungsten OK
- finding the right material is crucial

GlueX active collimator housing

partitioned anode (AI)

insulating cathode holder (BN)

GlueX active collimator assembly

Design changes for KLF

New housing with 3cm radius inner clearance circle -

- <u>just one ring</u>, four quadrant wedges
- can reuse existing tungsten wedges
- small adjustments can accommodate extra clearance

Can it scale by 10⁴ intensity?

Original design worked in SLAC (pulsed) e- beam!

- unit gain, like an ion chamber
- charging effects mitigated using 50V bias on the electrodes
- large dynamic range used by GlueX

11

oxp,oxm,oyp,oym current vs beam intensity

Position resolution

Electronic noise is negligible at GlueX Phase 2 intensity

- $\sigma_x = \sigma_y = 0.3 \text{ mm} @ 60 \text{Hz}$
- spot size (mult. scatt. in CPS radiator) will smear this by some factor
- smearing also increases current on the wedges, reduces halo fraction

oxp-oxm asymmetry from scan 116.5

Electronic noise spectrum

Necessary changes to the readout

Necessary changes to the readout

Summary

- A variant of the GlueX active collimator will provide a fast, reliable photon beam position monitor for KLF.
- Some bits (readout, outer wedges) can be borrowed from the existing setup.
- Cost of new bits (mainly housing) estimated at \$10k.

backup slides

Simulated detector response

Simulated position sensitivity

beam displacement along x (cm)

Monte Carlo

 $\pm 200 \ \mu m$ of motion of beam centroid on photon detector

corresponds to

±5% change in the left/right current balance in the inner ring

Measured position sensitivity

oxp-oxm asymmetry from scan 116.5

Measured position sensitivity

oxp-oxm asymmetry from scan 116.5

Measured position sensitivity

