KLF for Hyperon Spectroscopy

Igor Strakovsky The George Washington University (for KLF Collaboration)

- Thermodynamics @ Freeze-out.
- Spectroscopy of Hyperons.
- KLF Project.
- PWA for Strange Sector.
- K_Lp DB.
- Opportunity with K_L beam.
- Expected K_Lp data.
- Impact for Spectroscopy.
- Summary.

*Supported by 🔞

History of the Universe

 The omission of any "missing hyperon states" in Standard Model will negatively impact our understanding of QCD freeze-out in heavy-ion & hadron collisions, hadron spectroscopy, & thermodynamics of early Universe.

 For that reason, advancing our understanding of formation of baryons from quarks & gluons requires new experiments to search for any missing hyperon resonances.

Thermodynamics at Freeze-Out

Recent studies that compare LQCD calculations of thermodynamic, statistical Hadron Resonance Gas models, & ratios between measured yields of different hadron species in heavy ion collisions provide indirect evidence for presence of "missing" resonances in all of these contexts.

3

The Review of Particle Physics (2019)

Baryon Resonances

- Three light quarks can be arranged in 6 baryonic families, \mathbb{N}^* , Δ^* , Λ^* , Σ^* , Ξ^* , & Ω^* .
- Number of members in family that can exist is not arbitrary.
- If SU(3)_F symmetry of QCD is controlling, then:

- Number of experimentally identified resonances of each baryon family in Summary Tables is 16 N*, 10 Δ *, 14 Λ *, 10 Σ *, 6 Ξ *, & 2 Ω *.
- Constituent Quark models, for instance, predict existence of no less than 64 N*, 22 Δ * states with mass < 3 GeV.
- Seriousness of "missing-states" problem is obvious from these numbers.
- To complete SU(3)_F multiplets, one needs no less than 17 Λ^* , 43 Σ^* , 42 Ξ^* , & 24 Ω^*

Proposal for JLab PAC47

Strange Hadron Spectroscopy with Secondary K_L Beam in Hall D

Experimental Support:

S. Adhikari³⁵, M. J. Amaryan (Contact Person, Spokesperson)³⁵, A. Austregesilo³⁹,
M. Baalouch⁴², M. Bashkanov (Spokesperson)⁵⁷, V. Baturin³⁵, V. V. Berdnikov^{52,32}, T. Black⁵⁵,
W. Boeglin³⁰, W. J. Briscoe⁵³, W. K. Brooks⁵¹, V. D. Burkert³³, E. Chudakov³³, P. L. Cole³,
O. Cortes-Becerra⁵³, V. Crede⁴⁵, D. Day¹², P. Degtyarenko³³, S. Dobbs (Spokesperson)⁴⁵,
G. Dodge³⁵, A. G. Dolgolenko³¹, H. Egiyan³³, S. Eidelman^{36,37}, P. Eugenio⁴⁵, S. Fegan⁵¹,
A. Filippi⁴⁹, S. Furletov³³, L. Gan⁵⁵, A. Gasparyan²⁰, G. Gavalian³³, D. I. Glazier¹⁹,

V. S. Goryachev³¹, L. Guo³⁰, A. Hayrapetyan¹⁸, G. M. Huber⁵⁰, A. Hurley⁵⁴, C. E. Hyde³⁵, I. Illari⁵¹, D. G. Ireland¹⁹, K. Joo⁴⁴, V. Kakoyan⁵⁶, G. Kalicy⁵², M. Kamel³⁰, C. D. Keith³³, C. W. Kim⁵¹, G. Krafft³³, S. Kuhn³⁵, S. Kuleshov⁴³, A. B. Laptev²⁸, I. Larin¹, D. Lawrence³³,
D. I. Lersch⁴⁵, W. Li⁵⁴, V. E. Lyubovitskij^{49,46,47,51}, D. Mack³³, D. M. Manley²⁷, H. Marukyan⁵⁶,
V. Matveev³¹, M. McCaughan³³, B. McKinnon¹⁹, C. A. Meyer³⁹, F. Nerling^{16,14}, G. Niculescu²²

A. Ostrovidov⁴⁵, Z. Papandreou⁴⁰, K. Park³³, E. Pasyuk³³, L. Pentchev³³, W. Phelps⁵³, J. W. Price¹¹, J. Reinhold³⁰, J. Ritman (Spokesperson)^{7,25}, D. Romanov³², C. Salgado³⁴, T. Satogata³³, A. M. Schertz⁵⁴, S. Schadmand²⁵, D. I. Sober⁵², A. Somov³³, S. Somov³², J. R. Stevens (Spokesperson)⁵⁴, I. I. Strakovsky (Spokesperson)⁵³, V. Tarasov³¹, S. Taylor³³, A. Thiel¹⁹, D. Watts⁵⁷, L. Weinstein³⁵, D. Werthmüller⁵⁷, T. Whitlatch³³, N. Wickramaarachchi³⁵, B. Wojtsekhowski³³, N. Zachariou⁵⁷, J. Zhang¹²

Theoretical Support:

93 experimentalists &
41 theorists are co-authors.

A. V. Anisovich^{8,15}, A. Bazavov¹³, R. Bellwied²⁴, V. Bernard³⁸, G. Colangelo⁴, A. Cieply⁴¹, M. Döring⁵³, A. Eskandarian⁵³, J. Goity^{33,21}, H. Haberzettl⁵³, M. Hadžimehmedović⁵⁰, R. L. Jaffe¹⁰, B. Z. Kopeliovich⁵¹, H. Leutwyler⁴, M. Mai⁵³, V. Mathieu²⁹, M. Matveev¹⁵, U.-G. Meißner^{8,26}, V. Mokeev³³, C. Morningstar³⁹, B. Moussallam³⁸, K. Nakayama², V. Nikonov^{8,15}, Y. Oh⁵⁹, R. Omerović⁵⁰, E. Oset⁶⁰, H. Osmanović⁵⁰, J. R. Pelaez²⁹, A. Pilloni³³, D. Richards³³, D.-O. Riska²³, A. Rodas²⁹, J. Ruiz de Elvira⁴, H-Y. Ryu⁹, E. Santopinto¹⁷, A. V. Sarantsev^{8,15}, J. Stahov⁵⁰, A. Švarc⁵⁸, A. Szczepaniak^{6,33}, R. L. Workman⁵⁰, B. Zou⁵

We plan to resubmit full Proposal for JLab PAC48 in 2020.

- project has to establish secondary K beam line at Jefferson Lab , with flux of three order of magnitude higher than **SLAC** had, for scattering experiments on both proton & neutron (first time !) targets in order
- To determine differential cross sections & self-polarization of strange hyperons with GlueX detector to enable precise PWA in order to determine all resonances up to 2400 MeV in spectra of Λ^* , Σ^* , Ξ^* , & Ω^* .
- In addition, we intend to do strange meson spectroscopy by studies of the π -K interaction to locate the pole positions in I = 1/2 & 3/2 channels.

has link to ion-ion high energy facilities as & & BROOKHAVEN & will allow understand formation of our world in several microseconds after Big Bang.

Width and Mass of $\mathcal{K}(800)$

Summary of $K\pi$ Scattering

- W will have very significant impact on our knowledge on $K\pi$ scattering amplitudes.
- It will certainly improve still conflictive determination of heavy K*'s parameters.
- It will help to settle tension between phenomenological determination of scattering lengths from data vs ChPT & LQCD.
- For K*(800), it will reduce: uncertainties in mass by factor of two & uncertainty in width by factor of five.
- It will help to clarify debated of its existence, &, therefore, long standing problem of existence of scalar meson nonet.

Oct 11th

Summary of Hyperon Spectroscopy

- We showed that versitivity with 100 d of running will allow to discovery many hyperons with good precision.
- Why should it be done with KL beam ?

This is only realizable way to observe s-channel resonances having all momenta of KL at once.

- Why should it be done at Jefferson Lab Because nowhere else in existing facilities this can be done.
- Why should we care that there are dozens of missing states ?

...The new capabilities of the 12-GeV era facilitate a detailed study of baryons containing two and three strange quarks. Knowledge of the spectrum of these states will further enhance our understanding of the manifestation of QCD in the three-quark arena. 2015 Long Range Plan for Nuclear Science

Road Map to Baryon Spectroscopy

10/30/2019

MIAPP-2019, Munich, Germany, October 2019

Igor Strakovsky 10

Search for Hyperon Resonances with PWA

• For scattering experiments on both proton & neutron targets one needs to determine:

- Differential cross sections.
- Self polarization of strange hyperons.
- Perform coupled-channel PWA.
- Look for poles in complex energy plane (contrary to naïve **bump** hunting).
- Identify all up Λ^* , Σ^* , Ξ^* , & Ω^* up to 2400 MeV.

We will use KN scattering data with statistics generated according to expected
 data for 20 and 100 days to show PWA sensitivity to obtain results for best fit.

What Can Be Learned with $\mathcal{K}^{0}_{\mathcal{L}}$ Beam ?

- New data for inelastic $K_L p$ scattering would significantly improve our knowledge of Σ^* , Λ^* , Ξ^* , & Ω^* resonances.
- Very few polarization data are available for any K_Lp reactions but are needed to help remove ambiguities in PWAs.
- To search for ``missing" hyperons, we need measurements of production reactions:

- If such measurements can be performed with good energy & angular coverage with good statistics.
- Then it is very likely that measurements with K_L beam would find several ``missing" hyperons.

PWA Formalism

• Differential cross section & polarization for K_Lp scattering are given by

$$\frac{d\sigma}{d\Omega} = \lambda^2 (|f|^2 + |g|^2)$$
$$P\frac{d\sigma}{d\Omega} = 2\lambda^2 \text{Im}(fg^*)$$

 $\lambda = \hbar/k_{\rm c} \otimes k$ is momentum of incoming kaon in CM.

 $f(W,\theta) \& g(W,\theta)$ are non-spin-flip & spin-flip amplitudes at $W \& \theta$.

Partial-Wave Expansion

• In terms of partial waves, $f(W,\theta) \otimes g(W,\theta)$ can be expanded as

$$f(W,\theta) = \sum_{l=0}^{\infty} [(l+1)T_{l+} + lT_{l-}]P_l(\cos\theta)$$
$$g(W,\theta) = \sum_{l=1}^{\infty} [T_{l+} - T_{l-}]P_l^1(\cos\theta)$$

l is initial orbital angular momentum. $P_1(\cos\theta)$ is Legendre polynomial. $P_1'(\cos\theta)$ is associated Legendre function.

Isospin Amplitudes

• Ignoring small CP-violating terms (~10⁻³), we can write

$$K_{L}^{0} = \frac{1}{\sqrt{2}}(K^{0} - \overline{K^{0}})$$
$$K_{S}^{0} = \frac{1}{\sqrt{2}}(K^{0} + \overline{K^{0}})$$

We have both I = 0 & I = 1 amplitudes for KN & KN scattering.

Amplitudes $T_{l\pm}$ can be expanded in isospin amplitudes as

$$T_{I\pm} = C_0 T_{I\pm}^0 + C_1 T_{I\pm}^1$$

 $T^{I}_{l\pm}$ are partial-wave amplitudes

with isospin I & total angular momentum $J = I \pm 1/2$

C^I are appropriate Clebsch–Gordon coefficients.

Igor Strakovsky 16

World K-long Data – Ground for Hyperon Phenomenology

W = 1.45 – 5.05 GeV

SAID: http://gwdac.phys.gwu.edu/

Limited number of K_L induced measurements (1961 – 1982) 2426 d σ /d Ω , 348 σ ^{tot}, & 115 P observables do not allow today to feel comfortable with Hyperon Spectroscopy results.

- Limited number of K_L observables in hyperon spectroscopy at present poorly constrain phenomenological analyses.
- Overall systematics of previous experiments varies between 15% & 35%.
 Energy binning is much broader than hyperon

widths.

- There were

 no measurements using
 polarized target.
 It means that there are
 no double polarized
 observables which
 are critical for
 complete experiment
 program.
- We are not aware of any data on neutron target.

Igor Strakovsky 17

10/30/2019

Samples of PWA Results for Current DB

M

A bit of History

VOLUME 138. NUMBER 5B

7 JUNE 1965

Photoproduction of Neutral K Mesons*

S. D. DRELL AND M. JACOB[†] Stanford Linear Accelerator Center, Stanford University, Stanford, California (Received 6 January 1965)

CP-violation (1964) Hot topic!

PHYSICAL REVIEW

First paper on subject

Photoproduction of a neutral K-meson beam at high energies from hydrogen is computed in terms of a K* vector-meson exchange mechanism corrected for final-state interactions. The results are very encouraging for the intensity of high-energy K_2 beams at high-energy electron accelerators. A typical magnitude is 20 μ b/sr for a lower limit of the K⁰ photoproduction differential cross section, at a laboratory peak angle of 2°, for 15-BeV incident photons.

Our motivation in carrying out this calculation is to emphasize the strong suggestion that an intense "healthy" K_2 beam will emerge from high-energy electron accelerators (SLAC in particular) and will be ava Gw for detailed experimental studies.

FIG. 3. Center-of-mass differential cross section at 10 BeV. Curve (1) gives the Born approximation. Curve (2) is obtained after subtraction of the $j=\frac{1}{2}$ partial wave. Curves (3) and respectively obtained after the $j=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$, and all partial have been corrected for absorption in final state. The resu shown as directly obtained from and drawn by the comput

10/30/2019

Courtesy of Mike Albrow, KL2016

CEBAF Upgrade to 12 GeV

Upgrade Goals

- Accelerator: 6 GeV ⇒ 12 GeV
- Halls A,B,C: e⁻ <11 GeV, < 100 μA
- Hall D: e^- 12 GeV $\Rightarrow \gamma$ -beam

Upgrade Status

- Reached 12 GeV in Dec 2015
- Halls A,D: finished
- Halls B,C: about a year to go

KL2016, Feb 2016

Overview of Hall D

10/30/2019

Hall D Beam Line for K-longs

MIAPP-2019, Munich, Germany, October 2019

10/30/2019

Igor Strakovsky 26

K-long & Neutron Rate on Glue X LH_2/LD_2 -target

24

KLF Monitor

Expected Energy-Resolution

• Mean lifetime of K⁻ is 12.38 ns ($c\tau = 3.7$ m) whereas mean lifetime of K_L is 51.16 ns ($c\tau = 15.3$ m).

Thus, it is possible to perform measurements of K_Lp scattering

at lower energies than K⁻p scattering due to high beam flux.

• Momentum measured with TOF between SC (surrounded LH₂/LD₂) & RF from CEBAF.

Expected Particle Identification with GlueX

10/30/2019

LONG

Expected Cross Sections vs Bubble Chamber Data

W measurements will span $\cos\theta$ from -0.95 to 0.95 in CM above W = 1490 MeV.

• K_L rate is $10^4 K_L/s = 2500 x$ **SLAC**

• Uncertainties (statistics only) correspond to 100 days of running time for:

28

$\mathcal{K}_{\mathcal{L}}p \rightarrow \mathcal{K}^+ \Sigma^0$ for Double Strange Hyperons

10/30/2019

 Our goal is
 To establish KL Facility at Jefferson Lab To do measurements which bring new physics.

Here we reviewed what can be learned by studying K_Lp & K_Ln scattering leading to two–body final states (1st stage).
 <u>At later stages</u>, we plan to do K_LN on aka with hydrogen & deuterium.

 Jefferson Lab Strangeness in nuclear & hadronic physics.
 It may extract very many missing strange states.
 To complete SU(3)_F multiplets, one needs no less than 17 Λ*, 43 Σ*, 42 Ξ*, & 24 Ω*.

 Discovering of ``missing" hyperon states would assist in advance our understanding of formation of baryons from quarks & gluons microseconds after Big Bang.

Full Proposal is coming for PAC48 in 2020, WELCOME to JOIN US.

KL2016

[60 people from 10 countries, 30 talks] <u>https://www.jlab.org/conferences/kl2016/</u> OC: M. Amaryan, E. Chudakov, C. Meyer, M. Pennington, J. Ritman, & I. Strakovsky

YSTAR2016

[71 people from 11 countries, 27 talks] <u>https://www.jlab.org/conferences/YSTAR2016/</u> OC: M. Amaryan, E. Chudakov, K. Rajagopal, C. Ratti, J. Ritman, & I. Strakovsky

HIPS2017

[43 people from 4 countries, 19 talks] <u>https://www.jlab.org/conferences/HIPS2017/</u> OC: T. Horn, C. Keppel, C. Munoz-Camacho, & I. Strakovsky

PKI2018

[48 people from 9 countries, 27 talks] <u>http://www.jlab.org/conferences/pki2018/</u> OC: M. Amaryan, U.-G. Meissner, C. Meyer, J. Ritman, & I. Strakovsky

Contraction of the second seco

In total: 222 participants & 103 talks

Igor Strakovsky 32

Vielen Dank für die Einladung und Ihre Aufmerksamkeit

Backup Slides

Resonance Workshop in Bergamo, Italy, October 2017

GW

10/30/2019

Why We Have to Measure Double-Strange Cascades in Jefferson Lab

 Heavy guark symmetry (Isgur–Wise symmetry) suggests that multiplet splittings in strange, charm, & bottom cascades should scale as approximately inverses of corresponding quark masses:

$1/m_{s}: 1/m_{c}: 1/m_{h}$

- If they don't, that scaling failure implies that structures of corresponding states are anomalous, & very different from one another. N. Isgur & M.B. Wise, Phys Rev Lett 66 1130 (1991)
- So far only hyperon resonance multiplet, where this scaling can be ``tested" & seen is lowest negative parity multiplet:

Λ (1405)1/2⁻ $-\Lambda$ (1520)3/2⁻, Λ_c (2595)1/2⁻ $-\Lambda_c$ (2625)3/2⁻, Λ_b (5912)1/2⁻ $-\Lambda_b$ (5920)3/2⁻

y of Dan-Olof Riska, 2017

 It works approximately (30%) well for those Λ-splittings. 			Courtesy of Dan-Olof Risk					
It would work even better for Ξ, Ξ_c, Ξ_b splittings,						Status as seen in —		
& should be very good for $\Omega, \Omega_c, \Omega_b$ splittings.	porticle do Particle	ta group J ^P	Overall status	Ξπ	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
	Ξ(1318)	1/2+	****					Decays weakly
lefferson Lab	$\Xi(1530)$ $\Xi(1620)$	3/2+	****	**** *				
• OThomas Jefferson National Accelerator Facility Can do double cascade spectrum.	E(1690)		***		***	**		
IHCh	Ξ(1820)	3/2-	***	**	***	**	**	
As sectrum is doing double charm cascade spectrum.	$\Xi(1950)$		***	**	**		*	
Imap	$\Xi(2030)$ $\Xi(2120)$		***		**	***		
E_(2790)1/2 ⁻ -E_(2815)3/2 ⁻	E(2250)		**					3-body decays
	Ξ(2370)		**					3-body decays
W 👾 R. Aaij <i>et al</i> , Phys Rev Lett 119 , 112001 (2017)	Ξ(2500)		*		*	*		3-body decays
ta Anayini Genter —								

10/30/2019

Expected statistics for differential cross sections of different reactions with LH₂ & below W = 3.0 GeV for 100 days of beam time:

	For d <mark>σ/d</mark> Ω	
Reaction	Statistics	
	(events)	
$K_L p \to K_S p$	2.7M	
$K_L p \to \pi^+ \Lambda$	7M	
$K_L p \to K^+ \Xi^0$	2M	For P, statistics is 0.2M
$K_L p \to K^+ n$	60M	
$K_L p \rightarrow K^- \pi^+ p$	7M	

- There are no data on ``neutron" targets &, for this reason, it is hard to make realistic estimate of statistics for K_Ln reactions.
 If we assume similar statistics as on proton target, full program will be completed after running 100 days with LH₂ & 100 days with LD₂ targets.
- Expected systematics is 10% or less.

