Phase 1- Upgrade Injector Model for KLF

Sunil Pokharel

September 21, 2021

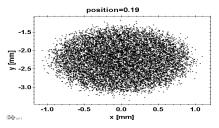
Sunil Pokharel (ODU)

GPT Model for KLF

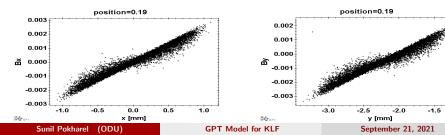
September 21, 2021 1 / 20

Outline

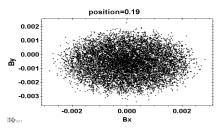
- Used the optimized parameter Phase 1 Upgrade Injector GPT Model (Courtesy- Alicia Hofler, 06/16/2021)
- Positions for elements from the gun through MFA0I03 are based on beamlinelayoutapril152020-gun-chopper.pdf and is noted as beamlinelayoutapril15.pdf in the GPT files.
- Downstream of MFA0I03, the positions are based on measurements
 Y. Wang and A. Hofler made in 2011, information from mechanical drawings, and even extracted from the old CEBAF PARMELA deck.
- Reference the quick reference drawing injector-quick-reference-rev6-20210607.pdf
- Initial distributions
- Energy gain
- Beam Characteristics
- End distribution


Initial distribution

- 130 kV D.C. gun
- 1 Prebuncher, 1Buncher, 5 Captures, Old 5-5 1/4 Cryomodule Booster (2 Cornell-style 5-cell cavities)
- 320 μA (0.64 pC, 128 ns) and 160 μA (0.32 pC, 64 ns) beam current at laser rf frequency=499 MHz (with space charge3Dmesh)
- The are equivalent to 5 $\mu A,$ 7.80 MHz and 15.59 repetition rates
- GaAsMTE = 0.030691;
- Thermal emittance 0.061 mm-mrad, FWHM=45 ps; 19.10 ps bunch length, 0.25 mm beam size, Gaussian Beam
- 10k macro-particles

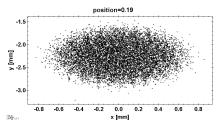

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Initial distribution, 128ns

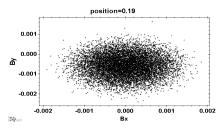

spatial distribution

horizontal phase space

momentum distribution



vertical phase space


4 / 20

Initial distribution, 64ns

spatial distribution

momentum distribution

vertical phase space

September 21, 2021

horizontal phase space

x [mm]

(ODU)

0.002

0.001

0.000

-0.001

-0.002

Sunil Pokharel

36

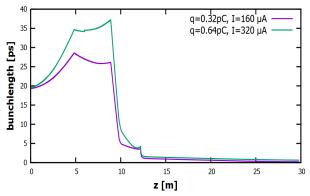
 position=0.19

 0.001
 0.000

 0.001
 0.000

 0.001
 0.000

 0.001
 0.000

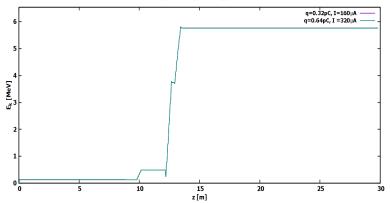

 0.002
 0.3.0
 -2.5

 0.2
 0.4
 0.6
 0.8

GPT Model for KLF

5 / 20

Bunchlength(σ_t)


nps=10k, space-charge on

Bunchlength upstream of the full module are 0.64 ps for 128ns and 0.23 ps for 64ns beam

Sunil Pokharel (ODU)

September 21, 2021 6 / 20

Kinetic Energy (E_k)

nps=10k, space-charge on

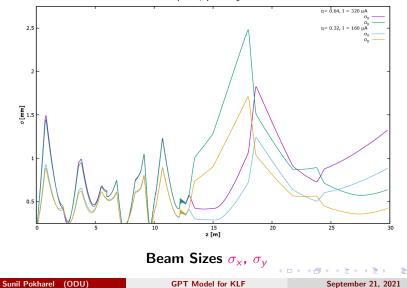
The average KE is 5.76 MeV


Sunil Pokharel (ODU)

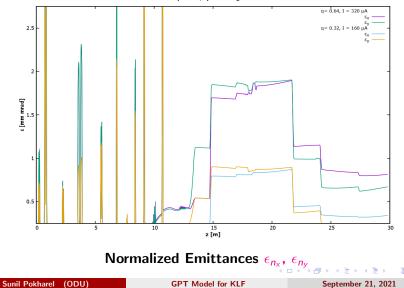
GPT Model for KLF

3

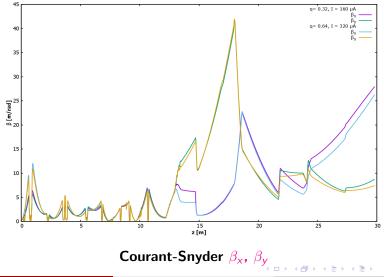
7 / 20


・ 同 ト ・ ヨ ト ・ ヨ ト

Sunil Pokharel (ODU)


GPT Model for KLF

September 21, 2021 8 / 20

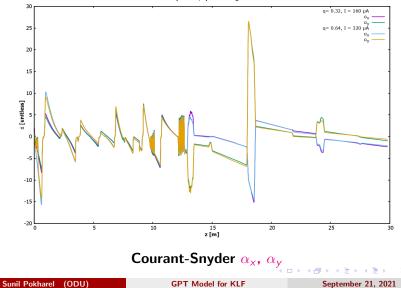

9 / 20

nps=10k, space-charge on

10 / 20

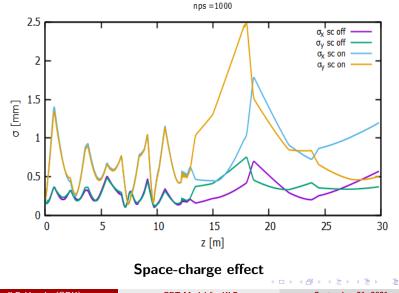
nps=10k, space-charge on

nps=10k, space-charge on


Sunil Pokharel (ODU)

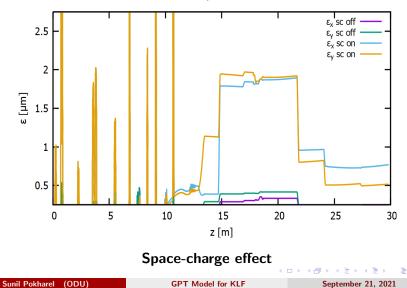
GPT Model for KLF

September 21, 2021


э

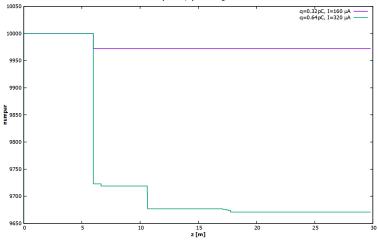
11/20

12 / 20


nps=10k, space-charge on

Sunil Pokharel (ODU)

GPT Model for KLF


September 21, 2021 13 / 20

14 / 20

nps =1000

Beam Transmission

nps=10k, space-charge on

Beam transmission decreases with increase in bunch charge • □ ▶ • □ ▶ • □ ▶ • □ ▶

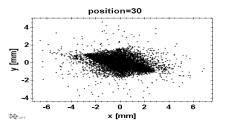
Sunil Pokharel (ODU) GPT Model for KLF

September 21, 2021 15 / 20

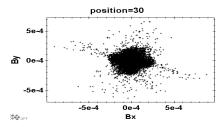
- 3

Acceptable beam characteristics

Beam Characteristic	Sensitivity Limit	Optimization Goal
beam transmission	$\geq 99.9\%$	$\geq 99.9\%$
transverse emittance	$\leq 1 \text{ mm mrad}$	$\leq 0.25 \text{ mm mrad}$
bunchlength	$\leq 1 \text{ ps}$	$\leq 0.5 \text{ ps}$
E_k	not considered	5.5 to 7.5 MeV
σ_{E_k}	see $\sigma_{E_k}/\bar{E_k}$	$\leq 50 \text{ keV}$
σ_{E_k}/E_k	comparable to optimal case	not specified since use σ_{E_k}

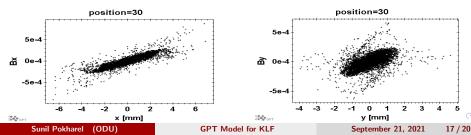

Criteria for acceptable beam characteristics upstream of the first full cryomodule in the Injector

16 / 20

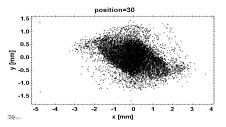

< ロ > < 同 > < 三 > < 三 >

Final distribution, 128ns

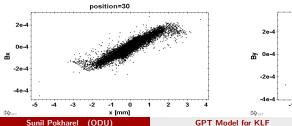
spatial distribution



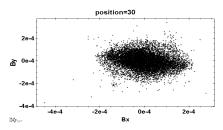
momentum distribution

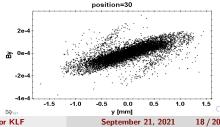

vertical phase space

horizontal phase space



Final distribution, 64ns


spatial distribution


horizontal phase space

momentum distribution

vertical phase space

Summary

- 1. Phase 1- Upgrade Injector Model for KLF 128 ns and 64 ns is simulated using GPT
- 2. For 130 keV beam, the results are produced using GPTwin.
- **3.** The average electron beam kinetic energy is 5.76 MeV with sigma energy spread around 18 keV for 128 ns and 15 keV for 64 ns. The average beam energy is 6.27 MeV upstream at 30 m.
- 4. For 128 ns beam, $\sigma_x = 1.32$ mm, $\sigma_y = 0.64$ mm and $\sigma_z = 0.64$ ps, normalized emittances $\epsilon_{n_x} = 0.816$ mm-mrad and $\epsilon_{n_y} = 0.672$ mm-mrad respectively
- 5. For 64 ns beam, $\sigma_x = 0.88$ mm, $\sigma_y = 0.42$ mm and $\sigma_z = 0.23$ ps, normalized emittances $\epsilon_{n_x} = 0.344$ mm-mrad and $\epsilon_{n_y} = 0.251$ mm-mrad respectively
- 6. For 128 ns beam transmission is 96.71% while for 64 ns it is 99.72 %

イロト イポト イヨト イヨト 三日

Thank You !

Sunil Pokharel (ODU)

GPT Model for KLF

September 21, 2021

3

20 / 20

・ロト ・四ト ・ヨト ・ヨト