Dose rate outside the Tagger Hall.

CPS Cost and Weight.

Transistor Lifetime.

Magnet Design.

03/20/2023

Tagger Hall model with CPS.

Map with \pm -90 cm wide CPS: \pm -60 < z/cm < 370.

Map with \pm - 90 cm wide CPS: \pm -75 < z/cm < 370. Longer wall.

Tagger Hall model with CPS moved by 2 m downstream.

Map with elliptical CPS moved downstream by 2 m. Longer appendix wall.

Dose Eq. Map with elliptical CPS moved by 2 m downstream.

Neutron 1 MeV Equivalent Flux and Si Lifetime.

• Orange zone corresponds to lifetime $T_{Si} = 1.E + 14 [n/cm^2] / 1/E + 6 [n/cm^2/s] = 1.E + 8 s = 3 years.$

Prompt Dose Equivalent is irrelevant to Si lifetime. Transistor gain is given vs rads or n/cm²

- 100 rem= \sim 5 rad. ½ Gain for SPNP at 200 krad: 200 krad/5 rad/hr= 4.5 year.
- For VPNP transistor = 500 krad/ 10 rad/hr (Techn. Note) = 5.7 year.
- Consistent with 1MEVNE based estimate of 3 years at critical flux 1.E+14 n/cm²

Transistor Gain and radiation.

(http://lhcb-elec.web.cern.ch/papers/radiation_tutorial.pdf)

Cost without magnet. Weight including magnet.

CPS Component	Material	Density	Cost	Weight	Total cost
	1	g/cm ³	\$/Kg	Metric T	K\$
Absorb. In/out	W	16.3	80.00	0.2	15.5
Lead skin	Pb	11.4	5.8	15.1	87.5
Plastic shield	PE	1.2	20.5	0.5	10.1
Lead shield	Pb	11.4	5.8	36.5	211.4
Left shield	W	16.3	80.0	1.4	108.0
Top shield	W	16.3	80.0	8.0	67.0
Right shield	W	16.3	80.0	1.4	108.0
Bottom shield	W	16.3	80.0	0.8	67.0
Magnet	Fe	7.9	50.0	2.0	.0
Absorber	Cu	9.0	122.6	0.2	27.4
Upstream shield	W/Cu	15.2	140.0	0.2	21.6
Downstream shield	W/Cu	15.2	140.0	1.2	171.4
CPS -magnet	CPS			61.1	895.2
Tungsten	Tungsten			6.6	543.2

	Cost k\$	Dens g/cm3	Cost \$/kG	Weight /g
PbSkin+	87.6	11.35	5.8	1.510E+7
BorPol+	12.8	1.5	20.5	6.233E+5
WPWDR-Pb+	214.6	11.35	5.8	3.700E+7
UpsWsh1+	12.5	16.3	80	1.560E+5
DstWsh2+	83.2	16.3	80	1.040E+6
WPwde1+	108.0	16.3	80	1.351E+6
WPwde2+	67.8	16.3	80	8.471E+5
WPwde3+	108.0	16.3	80	1.351E+6
WPwde4+	67.8	16.3	80	8.471E+5
Febox+	0.0	7.88	0	2.037E+6
LeftPole	0.0	8.96	0	4.961E+5
RigtPole	0.0	8.96	0	4.961E+5
Absorb	27.5	8.96	122	2.257E+5
UpsWCu	21.5	15.2	140	1.535E+5
DstWCu	13.9	15.2	140	9.932E+4
COST k\$	825			M. Ton=
		-		61.8

How the 3m Magnet/Platform may be fabricated - assembled!

- All dimensions are close to baseline FLUKA design.
- Kapton insulation!
- Need to make it \sim 50 cm wide For

Coil 122 windings 20 kA-turns vs 1.8 kA*16 = 29 kA-turns