Sumpary of the Absorber Temperature Calculations

Hovanes Egiyan

What Has Been Done?

- Several conditions have been simulated with FLUKA for each model.
- Quite a bit of effort from Vitaly and Pavel.
- The power deposition data have been analyzed with Mathematica
- I can use both rectangular mesh or cylindrical mesh.
- Cylindrical mesh is good when the axis is near the hot spot
- Relatively small mesh and faster analysis (~ 2-3hrs per condition).
- Problems with boundary conditions when they involve the temperature gradient.
- Workarounds and hacks are needed.
- Most likely has larger uncertainties than rectangular mesh with a fine element size for the solver.
- Rectangular mesh needs to have much finer element sizes near the hotspot.
- Larger mesh and longer run times (16-24hrs per condition)
- Simple to setup the model and the mesh.
- The sets were analyzed with cylindrical mesh in the solver.
- For Vitaly's data, I converted the cylindrical grid coordinates to Cartesian .
- Some of the outstanding settings were analyzed with rectangular mesh.
- The thermal analysis in complete
- Tim needs to check the static structural analysis in ANSYS to check for safety factors and margins.
"BC-65-m23" Test Summary (Vitaly)

Test Configuration Name	$\mathrm{R}_{\max }(\mathrm{cm})$	$\phi_{\max }(\mathrm{deg})$	$\mathrm{Z}_{\text {max }}(\mathrm{cm})$	$\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {cold }}\left({ }^{\circ} \mathrm{C}\right)$	Maximum power $\left(\mathrm{KW} / \mathrm{cm}^{3}\right)$
All Nominal ($\sigma^{(x, y)}{ }_{\text {beam }}=1 \mathrm{~mm}, 4$ holes)	0.32	-90	135	90	50	2.9 (Total 53 KW)
$\sigma^{(x, y)}{ }_{\text {beam }}=0.33 \mathrm{~mm}$	0.32	-90	140	135	55	8.0 (Total 53 KW)
$\sigma^{(x, y)}{ }_{\text {beam }}=1.5 \mathrm{~mm}$	0.32	-90	50	120	55	1.8 (Total 53 KW)
90\% B-field	0.32	-90	150	88	50	2.5 (Total 53 KW)
110\% B-field	0.32	-90	120	102	55	7.0 (Total 53 KW)
-1mm shift in Y	0.33	-90	50	145	55	4.2 (Total 54 KW)
+1mm shift in Y	0.32	-90	165	90	50	2.7 (Total 53 KW)
-0.5mrad angle in Y	0.32	-90	100	110	50	3.7 (Total 54 KW)
+0.5mrad angle in Y	0.65	-90	355	100*	50	2.2 (Total 52 KW)
+1mm shift in X	0.32	-75	57	105	50	2.4 (Total 51KW)
+0.5mrad angle in X	0.32	245	120	90	50	3.0 (Total 54 KW)
20\% radiator thickness	0.32	-90	115	90	50	2.3 (Total 49KW)

Check with a Fine Rectangular Grid for $\Delta Z=1 \mathrm{~m}$ absorber

Nominal , 1m long in Z section	0.32	-90	135	86	50	2.9
$\sigma^{(x, y)}$ beam $=0.33 \mathrm{~mm}, 1 \mathrm{~m}$ long in Z	0.32	-90	140	120	55	8.0
-1 mm shift in Y, 1m long in Z	0.37	-90	50	135	55	4.2

Potential Problems and Mitigations (Vitaly)

- At larger vertical angles ($500 \mu \mathrm{rad}$), the beam can penetrate deep into CPS passed the second magnet.
- Temperatures will be OK
- There might be radiation issues.
- Large angles should be prevented by an interlock on the photon beam position.

$$
\theta_{\mathrm{y}}=+0.5 \mathrm{mrad}
$$

- At lower beam position (-1mm), at horizontal offsets (1 mm), or wider beam ($\sigma=1.5 \mathrm{~mm}$), the hot spot is just before the first magnet
- There should not be high temperature issues.
- Radiation dose rate to the magnet might be elevated.
- The beam positions should be monitored and interlocked.
- The beam width needs to be measure on a regular basis with wire scans.

KLCPS69 Test Summary (Pavel)

Test Configuration Name	Hot Spot Location Section	$\mathrm{R}_{\max }(\mathrm{cm})$	$\phi_{\max }(\mathrm{deg})$	$\mathrm{Z}_{\text {max }}(\mathrm{cm})$	$\mathrm{T}_{\text {max }}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {cold }}\left({ }^{\circ} \mathrm{C}\right)$	Maximum power (KW/cm ${ }^{3}$)
All Nominal ($\sigma^{(x, y)}{ }_{\text {beam }}=1 \mathrm{~mm}, 4$ holes)	Keyhole	0.04	+90	37	200	55	7
$\sigma^{(x, y)}{ }_{\text {beam }}=0.33 \mathrm{~mm}$	Keyhole	0.1	+90	43	250	65	14
$\sigma^{(x, y)}{ }_{\text {beam }}=1.5 \mathrm{~mm}$	Keyhole	0.2	+90	8.5	205	55	5
97\% B-field	Circular	0.15	+90	58.5	205	60	8
103\% B-field	Keyhole	0.1	+90	33	200	55	7
-1mm shift in Y	Keyhole	0.2	+90	8	220	60	7
+1mm shift in Y	Circular	0.1	+90	57	225	60	6.5
-0.5mrad angle in Y	Keyhole	0.2	+90	8.5	220	60	6.5
+0.5mrad angle in Y	Circular	0.15	+90	58	235	60	7
+1mm shift in X	Keyhole	0.5	+70	7.5	245	60	6
+0.5mrad angle in X	Keyhole	0.45	+70	8	250	60	6

Check with a Fine Rectangular Grid

All Nominal $\left(\sigma^{(x, y)}\right.$ beam $=1 \mathrm{~mm}, 4$ holes $)$	Keyhole	0.13	+90	37	230	100	7
$\sigma^{(x, y)}$ beam $=0.33 \mathrm{~mm}$	Keyhole	0.1	+90	43	290	105	14
+0.5 mrad angle in Y	Circular	0.15	+90	58	275	105	7
+1 mm shift in X	Keyhole	0.5	+70	8.2	260	100	4

Potential Problems and Mitigations (Pavel)

- At very large vertical angles (500 urad), the beam can penetrate deep into CPS and cause somewhat elevated temperatures ($275^{\circ} \mathrm{C}$).
- The radiation environment is probably not going to be affected much.
- The photon beam position needs to be monitored and used in the beam interlock.
- At large horizontal shifts ($\sim 1 \mathrm{~mm}$), the beam can impact the upstream wall of the absorber missing the keyhole and thus cause high temperatures ($300^{\circ} \mathrm{C}$).
- The radiation environment is probably not going to be affected much.
- Beam position need to be monitored and beam needs to be shut off at large excursions.

Thermal Deformations

- Assume uniform and isotropic copper absorber not attached to anything.

- Thermal strain for uniform isotropic body is $\varepsilon=\alpha \cdot \Delta T$.
- Assume that such a displacement actually occurs.
- With an approximation for the curvature radius $r \approx \frac{H}{\alpha \Delta T}$, and for the sagitta $s=r-\sqrt{r^{2}-\frac{L^{2}}{4}} \approx \frac{\alpha}{8} \cdot \Delta T \cdot \frac{L^{2}}{H}$, assuming $\alpha \approx 1.674 \cdot 10^{-5} \frac{1}{K}$, we get that:
a) At $L=94 \mathrm{~cm}, H=10 \mathrm{~cm}, \Delta T=150^{\circ} \mathrm{C}, s \approx 2.8 \mathrm{~mm}$.
- Sagitta is almost as large as a third of the photon beam channel!
b) At $L=229 \mathrm{~cm}, H=10 \mathrm{~cm}, \Delta T=100^{\circ} \mathrm{C}, s \approx 11.0 \mathrm{~mm}$.
- Sagitta is larger than the whole beam channel!
c) At $L=94 \mathrm{~cm}, H=5 \mathrm{~cm}, \Delta T=30^{\circ} \mathrm{C}, s \approx 1.1 \mathrm{~mm}$.
- We may need to have shorter than one-meter-long absorber segments along the beam.
- The temperature change over the long part of the absorber should be $\Delta T<30^{\circ} \mathrm{C}$.
d) At $L=10 \mathrm{~cm}, H=5 \mathrm{~cm}, \Delta T=500^{\circ} \mathrm{C}, s \approx 0.2 \mathrm{~mm}$.
- We may need to have $\sim 5 \mathrm{~cm}$ high and 10 cm long slits every 10 cm to avoid large deformation in the high temperature areas.
- These concepts needs to be properly modeled and calculated in ANSYS.

Thermal stresses

- Assume uniform and isotropic copper absorber not attached to anything.
- Thermal strain for uniform isotropic body is $\varepsilon=\alpha \Delta T$.
- Thermal stresses for uniform isotropic body are
- $\sigma_{\text {norm }}=E \cdot \varepsilon=\alpha \cdot E \cdot \Delta T$ for normal stresses,
- $\sigma_{\text {sheer }}=G \cdot \varepsilon=\alpha \cdot G \cdot \Delta T$ for sheer stresses.
- For copper :
- $\sigma_{\text {max }}^{Y} \approx 283 \cdot 10^{6} \mathrm{~Pa}, \sigma_{\text {max }}^{T} \approx 350 \cdot 10^{6} \mathrm{~Pa} ; \alpha \approx 1.674 \cdot 10^{-5} \frac{1}{\mathrm{~K}} ; G \approx 4.4 \cdot 10^{10} \mathrm{~Pa}$ and $E \approx 12.6 \cdot 10^{10} \mathrm{~Pa}$.
- These constant depend on the type of the copper used.
- Using Tim's numbers, where available.
- Maximum allowed temperature differences for these numbers would be :
- $\Delta T=134^{\circ} \mathrm{C} / 166^{\circ} \mathrm{C}$ for normal stress,
- $\Delta T=384^{\circ} \mathrm{C} / 475^{\circ} \mathrm{C}$ for sheer stress.
- Both of our CPS models can avoid $\Delta T=384^{\circ} \mathrm{C}$ temperature differences across the absorber by monitoring and controlling the beam conditions.
- Normal thermal stresses are not expected to be large
- There may be nothing we need to do to avoid excessive thermal stresses in the CPS models if there are no compression stresses involved.
- This needs to be checked with ANSYS realistic model.
- Mechanical stresses can be induced.
- Normal stresses can also be present.
- Even the presence of excessive stresses does not mean failure
- CPS mechanical models need to be solved to determine the behavior of the absorber at given temperature and boundary conditions.

Conclusions

- Both models provide acceptable temperatures assuming care is taken when designing the absorber.
- Pavel's model $\mathrm{T}_{\max } \approx 300^{\circ} \mathrm{C}$ for reasonably possible beam conditions.
- Vitaly's model $\mathrm{T}_{\max } \approx 150^{\circ} \mathrm{C}$ for reasonably possible beam conditions.
- Deformations and thermal stresses are highly unlikely to be serious problems.
- Proper design for the absorber and mounting will be needed.
- Radiation is another environment is another important criteria for the CPS design
- The desired goal is to have PDE on the level of $25 \mathrm{rem} / \mathrm{h}$ in the tagger hall, as indicated in the PAC proposal.
- This is not a new goal, see e-mail from December 7, 2022, in the JLAB "mailman" archive.
- https://mailman.jlab.org/pipermail/halld-cps/2022-December/000004.html
- Activation dose after 1000-hour continuous beam operations and 1 hour break needs to be low enough for a controlled access into the hall.
- I would like to decide on the CPS model before next Monday meeting.
- Still need FLUKA data on beam size and beam background.
- Need to have the material weights for Tim to estimate the cost for models.

