

FIG. 1. The K_L yield measured at SLAC for 10 GeV electrons scattering at 2° .

Phys. Rev. D7 (1973), 708 (SLAC)

K-long Yield on KLF from SLAC measurements Moskov Amaryan

- This is obtained from 33cm Be target, which is <1.2 times
- compared to 40cm in KLF
- If we take integral from 1-7 GeV/c to be 18 events
- 14cm W plug suppression is exp(2.2)=9.0
- 6cm diameter of Be and I=5\mu A

- Then the uncertainty is due to the angle 2 deg in SLAC vs 0.06 deg in KLF and the integration

FIG. 1. The K_L yield measured at SLAC for 10 GeV electrons scattering at 2° .

P(K_L) GeV/c

FIG. 11. Comparison of expected yields for K_L^0 from Be to the average of K^+ and K^- yields from Be. The data sources are (\spadesuit) Ref. 46, (O) Ref. 47, and (I) Ref. 48. The electron energies, production angles, and target thicknesses are indicated. The curves are calculated from the fitted values for $\mathcal{F}(x)$ as explained in the text. The solid and dashed curves are as in the caption to Fig. 5.